
Mystic Lake Impacts on TMDL Stakeholders 

Maureen Hamilton, Pat Boldt 
Western Riverside County Agriculture Coalition 1 

August, 2015 
8/8/2015 



Hydrology Review 
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Historical Review 
• TMDL 2004 

– Dry, moderate, wet hydrologic scenarios 
– Wet hydrologic scenario (Mystic Lake overflow) defined as 

occurring in 1998. 
– Threshold flow 17,000 af/y. 
– Threshold flow exceeded 14 out of 86 years on record at the time 

(16%). 

• Monitoring post-2000 
– Moderate hydrologic scenario occurred 2005. 
– 2005 Mystic Lake was very full, but did not overflow. 
– 2005 flow from Canyon Lake was over 48,000 af/y. 
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Wet Hydrologic Scenarios 
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Hydrologic Changes 
• 1922 and 1927 qualified as wet hydrologic scenario years. 

Railroad Canyon Dam construction finished in 1929. 
• 29,000 af transfer from Canyon Lake to Lake Elsinore in 

1964.  Annual flow volume was 27,250 af in 1964, flow 
profile looks like a transfer as opposed to storm events. 
Mystic Lake overflow 9 of 98 years, 9% frequency of 

nutrient discharge. 
• Land use changes. 
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Multiple Precipitation Years (1) 
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Multiple Precipitation Years (2) 
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Multiple Precipitation Years (3) 
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Precipitation correlation leads to false accounting and prediction, variable over 
time and space. 



Subsidence (1) 
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Subsidence (2) 
• Effect on Mystic Lake capacity. 
• Subsidence rates in literature vary, 2.5-5 cm/year : 

– Conservatively assume 2.5 cm/year over the surface area from 
the 2004 RCFC stage-storage curve, 210 af/year.   

– Mystic Lake storage capacity increasing well over 2000 af every 10 
years.  
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Diversions (1) 

11 8/8/2015 



Diversions (2) 
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Diversions (3) 
• Over 12,000 af diverted in 1995. 
• Over 20,000 af diverted 2005 and 2006. 
• Diversions likely to be maximized. 
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Summary 
• TMDL responsibility needs to be updated for a wet 

hydrologic scenario that has not occurred in the last 17 
years. 

• The flow volume from Canyon Lake to Lake Elsinore is a 
poor predictor of a wet hydrologic scenario; with 2005 flow 
volume exceeding the 1998 threshold by more than 2 fold. 

• Hydrologic changes due to subsidence, diversions, and land 
use lessen the frequency and relative magnitude of 
contribution. 

• Natural and anthropogenic hydrologic changes are expected 
to continue, making overflow prediction difficult to 
impossible. 
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Next Steps 
• All stakeholders in subwatershed zones 7, 8, and 9 that 

contribute to Mystic Lake are fiscally responsible for 
contribution at a frequency that has not occurred, and gets 
less likely to occur with time. 

• How do we treat stakeholders in subwatershed zones 7, 8 
and 9 in a fair manner? 
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Elemental, and Mobile-P 
Concentrations in Lake Elsinore 
Sediments 



Objective 

To better understand the processes that affect 
the cycling of organic matter and nutrients in 
Lake Elsinore as well as infer past changes in 
nutrient dynamics 



Background: Phosphorus 

 Phosphorus exists in different forms in the sediment which vary in 
bioavailability and reactivity 
Loosely adsorbed and pore-water P 
Redox-sensitive P 

Iron and manganese oxides 

Aluminum-oxide bound P (not redox-sensitive) 
Organic P 
Ca-bound P 

 Identify mobile vs refractory forms to understand P mobility 
 



Background: Stable Isotopic Composition 
of Sediment 

 Stable C and N isotopic composition of sediments has been a 
useful tool in inferring:  
Sources of organic matter and  
Processes occurring during its cycling 

 Delta notation (δ13C, δ15N) 
Ratio of heavy to light isotope  
Negative delta value = more light than heavy 

 Fractionation 
Lighter isotope selectively utilized over heavy isotope during 

biological & chemical processes 

 



Methods 
Sample Collection 

42 cm profundal sediment cores, July 2014 
Sectioned into 1-2 cm intervals 
Homogenized 
Stored at 4°C until analysis 

Suspended organic matter in epilimnetic water, July 2014 
Phosphorus Fractionation (Psenner et al. 1988) 

1M NH₄Cl: Pore water and loosely-sorbed P 
0.11M Na₂S₂O₄/0.11M NaHCO₃: P bound to redox-sensitive Fe 

compounds 
0.1M NaOH: P bound to Al (hydr)oxides 

 



Methods 

Stable Isotopic Composition (δ13C and δ15N) 
Delta V Advantage Isotope Ratio Mass Spectrometer  
Costech Elemental Analyzer 

Elemental Composition 
X-ray Fluorescence Spectrometer 

 



Methods 

 Sedimentation rate:  
     1.27 cm/yr  
     (Mat Kirby) 
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Results: Sediment Composition 
OC and N content 

significantly correlated  
    (r2 = 0.98, r2 = 0.94) 
 Increase in 1994  

Greater mean lake depth 
 Enhanced OM preservation 
Greater OM input per 

sediment surface area 

 Exponential decrease in 
top 10 cm due to organic 
matter decomposition 
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Results: Sediment Composition 
OM highly recycled in water 

column 
 Relatively constant with depth 
OC:N of algae = 6.9 
 N selectively recycled from settling 

OM 
 2010 Study: 

 Sediment Trap 
TN = 0.85% 
OC = 6.48% 
C:N = 7.7 

 Surface Sediment 
TN = 0.5% 
OC = 4.3%  
C:N = 8.6 
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Results: Phosphorus 

 Exponential decrease typical for eutrophic 
lakes 

Mineralization of OM in top 10 cm; not due to 
increased TP loading to lake 
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Results: Elemental Composition 

1979

1984

1989

1994

1999

2004

2009

20140

5

10

15

20

25

30

35

40

45

0 2 4 6 8 10 12

Yea
r 

Se
d

im
en

t D
ep

th
 (c

m
) 

Ca (%) 

6-A

6-B

Calcium and organic carbon 
correlated (r2 = 0.79) 

CaCO₃ co-precipitation with 
organic matter  
 Primary productivity increases pH 
OM: nuclei for precipitation 

 Decrease in top 10 cm due to 
CaCO₃ dissolution coupled to OM 
decomposition 
 Respiration leads to increasing CO2 in 

porewater 
 Lower pH= CaCO₃ dissolves 

 

 

 

 



kr (yr-1) t1/2 (yr-1) 

Organic C 0.071 ± 0.004 9.7 ± 0.5 

Total N 0.079 ± 0.008 8.7 ± 0.9 

Total P 0.047 ± 0.022 14.7 ± 7.6 

Calcium 0.055 ± 0.010 12.5 ± 2.3 

 Half-lives of OC and N 
<10 years 

 Half-lives of TP and Calcium 
10-15 years 

 

 

 

 



Results: Phosphorus Fractions 
 Fe-P least abundant P fraction  
 Atypical trends for eutrophic lakes 
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 Shift to greater Al-P in 1994 
 Little change in pore-water P and 

Fe-P with depth 
 

 

 

 



Results: Stable Isotopic Composition 
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 3 Different Periods 

Shallow mean depth lake 
δ15N= 6.2 ± 0.4 ‰ 

Shift to deeper lake 
δ15N= 5.3 ± 0.5 ‰ 

Input from recycled water 
δ15N= 7.1 ± 0.4 ‰ 

Mean δ15N of each period 
significantly different 
 

 

 
 

 

 

 

 

 

 

 



Results: Stable Isotopic Composition 
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 Decrease in δ15N with LEMP 
completion 
Greater mean lake depth = 

decreased circulation and 
increased stratification 

2.5-4‰ decrease in δ15N during 
anoxic decay 
Due to bacterial growth in 

sediment 

 
 

 

 

 

 

 

 



Results: Stable Isotopic Composition 

 Shift to greater δ15N in 2002 
 Input from supplemental 

wastewater (sewage)  
      δ15N = 10-20 ‰ 
Denitrification 

14N preferentially reduced to N2 
  Residual NO3 more enriched 

(greater δ15N)    
 δ15N of algae 

 5.8 
 Indicates denitrification occurring in 

water column before sedimentation 
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Results: Stable Isotopic Composition 
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Gradual increase in δ13C from  
    -25 to -20 ‰ 
 Significant change with depth  
     (r2 = 0.72 for 6-A) 
Cause of increase 

Diagenesis? 
 Increasing eutrophication? 

 
 
 

 



Results: Stable Isotopic Composition 
 Diagenesis 

 Typically accounts for 1.6-1.8‰ 
decrease over time due to: 
Selective degradation of carbs 

and proteins (greater δ13C) 
Contribution of 13C-depleted 

microbial biomass 

 Increasing eutrophication 
 Depletion of CO2 during blooms 
 Phytoplankton less selective against 

13C 
 Use increasingly more 13C 1979

1984

1989

1994

1999

2004

2009

20140

5

10

15

20

25

30

35

40

45

-30 -25 -20 -15

Yea
r 

Se
d

im
en

t D
ep

th
 (c

m
) 
δ13C 

 (‰ vs VPDB) 

6-A

6-B



Conclusions 
 

Change in mean depth has resulted in changes in 
biogeochemistry within the sediments 

 Diagenesis of OC, TN, TP, and Calcium occurring in top 
10 cm of sediment 

 Shift to higher δ15N due wastewater input and 
denitrification (denitrification stimulated by wastewater 
input) 

Organic matter highly recycled in water column prior to 
sedimentation 
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In-Lake Monitoring Approach 

2 

1. Bi-monthly sampling (every other month) *Potential revised final freq. to enhance 
sampling in the summer pending additional historic analysis and discussion with the RWQCB. 

2. Water column vertical profiles (DO, pH, water clarity, temp, cond.)                            
1 m intervals (am/pm) 

• 3 sites in Lake Elsinore 
• 4 sites in Canyon Lake 

3. Water column chemistry/nutrient sampling – depth integrated samples 
• 1 site in Lake Elsinore (LE02) 
• 3 sites in Canyon Lake (CL07, CL08, CL10) 

4. Chlorophyll-a 
• Depth-integrated and 0-2m surface sample (all chem stations) 
• 0-2m surface sample only (CL09) 

5. Lake-wide satellite imagery 
• Chlorophyll-a  
• Turbidity 

6. Plankton sampling – preserved and archived 
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Station Locations – Lake Elsinore 
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Station Locations – Canyon Lake 
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First Sampling Event – July 31st, 2015 
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Example Water Profiles – July 31st, 2015 
Lake Elsinore 
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Example Water Profiles – July 31st, 2015 
Canyon Lake 
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Satellite Imagery and Analysis Vendor 
Comparison 
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• EOMaps Data Products 
• GIS files with approximately 11,300 LE and 2,000 CL data points  

• TIFF & KMZ (Google Earth) files 

• Put the Chl-a sample concentration into lake context 

• Able to run statistics 

• % of lake above/below target values 

• Lake-wide trends as sampling continues 

• QA data to determine value reliability 

 

Satellite Imagery 
Utilized 

Blue Water Satellite 
(Chl-a only) 

EOMaps 
(Chl-a only) 

EOMaps  
(Chl-a & Turbidity) 

Landsat 7 $37,350 $6,770 $7,250 

Landsat 8/Sentinel 2a $67,050 $6,770 $7,250 

Note: Annual costs for 6 image dates is shown. Landsat 7/8 satellite images free from USGS & offer 30m pixel resolution 
a Sentinel 2 to be launched in October 2015 (15-20m resolution) with data available in early Spring 2016. 
 

http://www.eomap.com/services/water-quality/ 
 

http://www.eomap.com/services/water-quality/
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Satellite Imagery – Conditions on July 31 
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Satellite Imagery – Chlorophyll-a in LE                
(fine scale gradient) 
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Satellite Imagery – Chlorophyll-a in LE 
(relative to TMDL targets) 
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Satellite Imagery – Turbidity in LE 
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Satellite Imagery – Chlorophyll-a in CL                             
(fine scale gradient) 
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Satellite Imagery – Chlorophyll-a in CL   
(relative to TMDL targets) 
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Satellite Imagery – Turbidity in CL 
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Next Steps 

 Frequency distribution curves and statistics for satellite imagery 
 Mean, median, 95th percentiles for chlorophyll-a and turbidity; compare to 

in situ measures and TMDL targets  
 Download from Lake Elsinore aeration data sonde (30 day period) 
 Compare to in situ measures of pH, DO, conductivity, water clarity, and 

temp. 
 Calculate average values based on discreet and continuous data 
 TMDL compliance comparison for DO   

 Analytical chemistry data expected soon 
 Summarize, stats, and comparison to TMDL targets 

 Integrate data with historical measurements 
 Next sampling date October 19 (LandSat8 overpass) 
 Watershed monitoring prep 
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