Lake Elsinore and Canyon Lake Nutrient TMDL Revision

Steven Wolosoff, BCES Richard Meyerhoff, PhD

January 13, 2016 LE/CL Nutrient TMDL Task Force Meeting

Project Kick-Off and General Approach

Elements of TMDL Revision

- EPA guidance on TMDL development
- TMDL chapter aligned to seven key elements
- Tasks in revision organized by element

Problem Statement

10000

8000

6000

4000

2000

TDS (mg/L)

Hydrologic trends that have variability over decadal timescales lacksquare

Annual runoff volume in San Jacinto River near Elsinore

Date

Problem Statement

Prob

lem

Stat

emmeric

- Settling of nutrients Reduced TDS zooplankton enrichment population Algae Uptake Sediment diagenesis Reduced Algae zooplankton survival Water column Sediment grazing mixing nutrient flux
- Bottom up and top down controls on bioavailable nutrients lacksquare

Element of TMDL Revision

- Prescriptive methods to compute response targets for Chl-a, DO, and ammonia toxicity that consider natural variability
 - Spatially (laterally and vertically)
 - Temporal (daily, seasonal, annual, decadal)

Frequency based temporal metrics

Fish-eye perspective

Source Assessment

- Watershed model update
 - 2014 land use data
 - Self-retaining areas
 - Nutrient attenuation between sources and lakes
 - Undeveloped land soil erosion

Linkage Analysis

- Existing CAEDYM model developed by UC Riverside
 - Recent study data to parameterize internal loading
 - Updated watershed loading inputs
 - Separate East Bay and Main Lake of Canyon Lake

Lake Elsinore water level calibration

Canyon Lake Depth Integrated TP

Linkage Analysis

• Two approaches for numeric target that affect linkage analysis

Allocations

- Watershed model to allocate allowable external loads to sources
 - Lake Elsinore
 - Canyon Lake East Bay (Salt Creek)
 - Canyon Lake Main Lake (San Jacinto River)
- Jurisdictional loads reaching lakes for use in estimating offset demands

Distinct approach to develop allocations for lands upstream of Mystic Lake

Implementation

- Modeling to assess need for existing BMP modification or supplemental projects
- Offset programs for multi- stakeholder participation in regional BMPs
- Develop supporting documentation
 - CEQA checklist / SED
 - Economic Analysis
 - Administrative Record

Review effectiveness of existing watershed and in-lake BMPs

Monitoring

- Compliance assessment for a revised TMDL may require changes to the existing monitoring program
- Special studies to assess implementation effectiveness
 - Control of watershed sources
 - Lake bottom sediment nutrients
 - Biomanipulation

Coordinate TMDL monitoring recommendations with current program

Long-Term Water Quality Simulations for Lake Elsinore: Pre-Development Condition and Effects of Supplementation with Recycled Water (v.3)

> Michael Anderson UC Riverside

Objectives

• Evaluate water quality under pre-development and selected management conditions

<u>Approach</u>

- Extend previously developed DYRESM (Dynamic Reservoir Simulation Model) that quantified water budget and provides 1-D hydrodynamic/thermodynamic/salinity predictions
- CAEDYM (Computational Aquatic Ecosystem Dynamics Model) was linked to DYRESM model to predict water quality and ecological properties of lake
- Model was calibrated for 2000-2014 period
- Simulations were conducted for 1916-2014 using LEMP basin and available meteorological and runoff data for this time period

Calibration (2000-2014)

- Meteorological demonstrated predictable seasonal trends
- Daily average shortwave (300-3000 nm) radiation ranged from ~50 W/m² in winter to 350 W/m² in summer
- Daily average air temperature varied from 10°C in winter to 30° C in summer
- Average windspeeds were typically 2-4 m/s
- Daily rainfall was highly variable, from 0 – 60 mm/d

• Inflows to Lake Elsinore included San Jacinto River flows, local runoff and recycled water

• Average mutrient concentrations in inflows taken from available data

Source	TDS (mg/L)	PO ₄ -P (mg/L)	Total P (mg/L)	NH ₄ -N (mg/L)	NO ₃ -N (mg/L)	Total N (mg/L)
San Jacinto R	310	0.28	0.50	0.22	0.57	1.62
Local Runoff	150	0.20	0.48	0.22	0.80	1.82
Recycled H ₂ O	705	0.32	0.41	0.36	1.62	2.87

High fraction of TN due in part to high concs in EMWD flows added in 2003

- The model reproduced general observed trends in total N concentrations
 - Increased concentration from 2000-2004
 - Marked reduction in 2005
 - Subsequent increase in 2008-2010
- Model reasonably reproduced most features in total P concentrations
 - Predicted peak concentration of 0.6 mg/L in late 2004 before declining to values of 0.2-0.3 mg/L later
- Model also better captured seasonal and interannual variation in chlorophyll a concentrations
 - Increase from 2000 to 2004 followed by subsequent decline
 - peaks in chlorophyll in late 2002, 2004

Mean predicted and observed values							
	Observed	Predicted	% Error				
Total N	3.98	3.88	-2.5				
Total P	0.265	0.235	-11.3				
Chl a	130	137	+5.4				

RESULTS <u>Pre-Development</u>

Pre-Development (cont'd)

- Lake level varied strongly in response to rainfall and runoff
- As previously noted, lake goes dry for a number of years in late 1950s early 1960s without recycled water supplementation
- Recycled water additions maintain lake level above ~1232' in this simulation

- Salinity concentrations without RW inputs varied in response to watershed inputs and evapoconcentration
- Input of RW maintains water in lake and prevents extreme TDS levels from developing (e.g, late 1930s and early 1950s)
- Flushing of salt out of lake during extreme runoff in 1978-79 normalized lake TDS levels with and without recycled water

- Total N concentrations without RW inputs varied in response to watershed inputs and evapoconcentration
- Inputs of RW not predicted to markedly increase total N concentration in the lake, and in fact lowered concentration when lake level very low (and evapoconcentration high)

- Similar to total N, recycled water supplementation did not substantially alter predicted concentrations, and was predicted to *decrease* P concentrations relative to no RW inputs at low lake levels due to:
 - Dilution during periods of otherwise strong evapoconcentration
 - Evidence for incorporation into food web and subsequent settling
 - System predicted to return to values of 0.2-0.25 mg/L

- Predicted daily chlorophyll a concentrations varied dramatically over simulation period, with levels reaching 1000 μ g/L during periods of very low lake levels
- Recycled water additions had little effect on chlorophyll a concentrations owing to similar nutrient levels as natural runoff

Mean Predicted Values: 1916-2014

	Mean Concentration (mg/L or μ g/L)					
	DO	Total N	Total P	Chl a		
Pre-Development	7.77	0.59	0.02	19.0		
Current/no RW	8.85	4.27	0.27	140		
With RW	8.30	4.20	0.26	125		
With RW+Aeration	9.03	4.01	0.24	125		
With RW(0.1 PO ₄)+Aer	9.02	4.01	0.23	125		

- Pre-development conditions predicted to be mesotrophic
- Recycled water inputs *lowered* slightly the average DO, TN, TP and chlorophyll a concentrations in lake relative to no recycled water inputs
- Supplementation with recycled water coupled with aeration
 - increased mean DO level
 - decreased slightly TN and TP concentrations
 - did not affect average chlorophyll a levels
- Reduction of PO₄-P in recycled water to 0.1 mg/L was not predicted to alter (99-yr) average values; median and shorter intervals differ more

Conclusions

- Simulations provide improved insights into trophic state of lake prior to development and in response of lake to longterm recycled water inputs
- Supplementation with recycled water:
 - Had limited effect on mean DO concentration in lake, but increased range of average water column DO concentrations, with both increased supersaturation and greater episodes of anoxia
 - Had negligible effects on average total N and total P concentrations
 - Predicted to lower slightly chlorophyll a concentrations
- Overall, model predictions do not indicate marked effects on water quality resulting from periodic inputs of recycled water to help maintain lake level
- Wrapping up simulations to assess effects of lowered runoff nutrient concentrations on water quality
- Development full statistical representation of results (e.g., as cdfs)