#### Lake Elsinore and Canyon Lake TMDL Revision Monitoring Requirements Chapter Update





#### Lake Elsinore and Canyon Lake TMDL Revision Monitoring Requirements Chapter Update





# Watershed Monitoring





| Site | Lat       | Long        | Comments                                                                                                     |
|------|-----------|-------------|--------------------------------------------------------------------------------------------------------------|
| 1    | 33.845423 | -117.06861  | Too much Ag. Site is in the middle of Ag fields                                                              |
| 2    | 33.787016 | -117.07173  | Very small watershed above this point. Unlikely to flow long enough for sample. Some residential in area.    |
| 3    | 33.956046 | -117.17789  | Too much urban influence                                                                                     |
| 4    | 33.946354 | -117.17622  | Too much urban influence                                                                                     |
| 5    | 33.958877 | -117.1842   | Might be Ok, but watershed has 6.28% low intensity residential                                               |
| 6    | 33.945045 | -117.19216  | Too much urban influence                                                                                     |
| 7    | 33.786614 | -117.20136  | Too much urban influence                                                                                     |
| 8    | 33.780265 | -117.30297  | Too much urban influence                                                                                     |
| 9    | 33.676906 | -117.398736 | A little too much residential just upstream                                                                  |
| 10   | 33.673042 | -117.39859  | Not sure where to sample from.                                                                               |
| 11   | 33.678833 | -117.40911  | Gate at Leach Canyon road precludes access to creek, otherwise good if gate access granted.                  |
| 12   | 33.714292 | -116.971751 | Salt Creek @ State St. – low density residential, small watershed                                            |
| 13   | 33.890439 | -117.070250 | Good. 2.86% low intensity residential                                                                        |
| 14   | 33.843347 | -116.996918 | A little too much urban: incorporates part of Beaumont: 6.0% low intensity residential, 3.9% commercial      |
| 15   | 33.759484 | -116.872380 | Great site, but wet weather access an issue. SWAMP verified reference sites in watershed                     |
| 16   | 33.862848 | -117.025500 | Great site. 2.7% low intensity residential                                                                   |
| 17   | 33.736812 | -116.826491 | Cranston Guard Station. 4.4% low intensity residential. Cities of Idyllwild and Mountain Center in watershed |

#### **Addition of Reference Sites – Cranston Guard**





| Land Use                     | Watershed Total |
|------------------------------|-----------------|
| Open Water                   | 0.43%           |
| Low Intensity<br>Residential | 4.39%           |
| Commercial                   | 0.03%           |
| Deciduous Forest             | 0.00%           |
| Evergreen Forest             | 34.19%          |
| Mixed Forest                 | 3.64%           |
| Other                        | 57.31%          |





| Land Use                     | Watershed Total |
|------------------------------|-----------------|
| Open Water                   | 0.10%           |
| Low Intensity<br>Residential | 4.65%           |
| Commercial                   | 8.75%           |
| Deciduous Forest             | 0%              |
| Evergreen Forest             | 5.48%           |
| Mixed Forest                 | 2.69%           |
| Other                        | 78.33%          |





| Land Use                     | Watershed Total |
|------------------------------|-----------------|
| Open Water                   | 0%              |
| Low Intensity<br>Residential | 2.86%           |
| Commercial                   | 0%              |
| Deciduous Forest             | 0%              |
| Evergreen Forest             | 0%              |
| Mixed Forest                 | 0%              |
| Other                        | 97.14%          |





| Land Use                     | Watershed Total |
|------------------------------|-----------------|
| Open Water                   | 0.01%           |
| Low Intensity<br>Residential | 2.53%           |
| Commercial                   | 0%              |
| Deciduous Forest             | 0%              |
| Evergreen Forest             | 12.86%          |
| Mixed Forest                 | 5.50%           |
| Other                        | 79.10%          |





| Land Use                     | Watershed Total |
|------------------------------|-----------------|
| Open Water                   | 0%              |
| Low Intensity<br>Residential | 0.27%           |
| Commercial                   | 0%              |
| Deciduous Forest             | 0%              |
| Evergreen Forest             | 0%              |
| Mixed Forest                 | 0%              |
| Other                        | 99.73%          |

#### Lake Elsinore and Canyon Lake TMDL Revision Monitoring Requirements Chapter Update





#### **Changes to In-lake Monitoring**



#### Both Lakes

- Utilize Sentinel-2 satellite imagery (10-meter resolution) for chlorophyll-a and turbidity measurements during months in which it is available (September through May), and LandSat 8 satellite imagery (30-meter resolution) during all other months (June through August)
- Add cyanobacterial toxin sampling to the analyte list for each monitoring event
- Discontinue the morning/afternoon water column profiles at each TMDL station

#### Lake Elsinore

 Utilize the two EVMWD multi-depth in-lake water quality sondes in combination with fixed depth dissolved oxygen sondes mounted just under the surface at both EVMWD sondes to replace the morning/afternoon water column profiles

#### Canyon Lake

- Utilize a combination of fixed depth in-lake dissolved oxygen and temperature sondes to replace the morning/afternoon water column profiles
- Add Station CL09 to sites being monitored for full analyte list
- Add total and dissolved aluminum to the analyte list

#### **Outline of Revised Monitoring Design Chapter**



- 1. INTRODUCTION AND BACKGROUND
  - a) Describe prior iterations of the monitoring program. How it has changed.
  - b) How this former data was used to look at trends/identify data gaps
  - c) How those gaps got addressed in latest monitoring design 2015-2018
- 2. REVISED TMDL MONITORING APPROACH
  - a) Why the need for a new monitoring approach? Integrate with Ch. 3 Numeric Targets Reference Watershed Approach
  - b) Layout new monitoring approach
- 3. DEMONSTRATING COMPLIANCE WITH NUMERIC TARGETS
  - a) Sections on each of the TMDL monitoring targets (DO, TN, TP, CHL, NH3).
  - b) How the new monitoring approach will generate data to determine TMDL compliance.
  - c) Example plots to show compliance.

## **Questions?**

#### Satellite Imagery – Chlorophyll Sept 2017

#### amec foster wheeler

#### Lake Elsinore



#### Canyon Lake



#### Satellite Imagery – Cyanobacterial Bloom Indicator Sept 2017



**Canyon Lake** 

#### Lake Elsinore



# Revision of the Lake Elsinore & Canyon Lake Nutrient TMDL

CDM Smith Team & Risk Sciences

#### **Implementation Task**

October 19, 2017 Lake Elsinore/Canyon Lake Task Force Meeting





# **Presentation Outline**

- Cyanotoxins in Reference Condition
- Watershed Monitoring Data
- Reasonable Assurance Analysis Update
- Implementation Framework
- Supplemental project characterization
- Monitoring Chapter Update





# Cyanotoxins in Reference Condition



# **Cyanotoxins in Reference Condition**

- Statistical analysis of 2007 National Lake Assessment for 1077 lakes Yuan et al (2014)
- Microcystin detected 32 percent of samples
  - Microcystin >1.0 ug/L in 12 percent of samples



Source: Yuan, Lester L., Amina I. Pollard, Santhiska Pather, Jacques L. Oliver, and Lesley D'Anglada (2014). Managing microcystin: identifying national scale thresholds for total nitrogen and chlorophyll-a, *Freshwater Biology*, v59 (1970-1981).



## **Cyanotoxins in Reference Condition**

- Translation of modeled chlorophyll-a for reference watershed condition to probability of exceeding 1 ug/L Microcystin based on relationship discovered in Yuan et al (2014)
- Microcystin in reference condition (numeric target)



CDM Smith





#### • 34 wet-weather sampling events 2001-2017



• 34 wet-weather sampling events 2001-2017

CDM Smith



- Median of nutrient concentrations from recent events (2011-2017)
- Accounts for benefits of recent watershed BMP deployments
- RAA for 2017 TMDL does not apply watershed reduction credits prior to 2017

CDM

|                    | San Jacinto River at Goetz |           | Salt Creek at Murrieta |           | San Jacinto River near<br>Elsinore |           |
|--------------------|----------------------------|-----------|------------------------|-----------|------------------------------------|-----------|
|                    | TP (mg/L)                  | TN (mg/L) | TP (mg/L)              | TN (mg/L) | TP (mg/L)                          | TN (mg/L) |
| MEDIAN (Post 2011) | 0.73                       | 2.22      | 0.39                   | 2.12      | 0.46                               | 1.78      |
| MEDIAN (Pre 2011)  | 0.68                       | 2.93      | 0.62                   | 2.68      | 0.46                               | 1.95      |



# Historic versus Current Flux Rates



## Sediment Diagenesis Analysis

- Limitation No dynamic sediment diagenesis in CAEDYM (i.e. constant flux parameter)
- Independent sediment diagenesis analysis to quantify percent difference in internal loads for current or reference watershed conditions
- Result used for scaling of constant flux rate parameter in CAEDYM
  - 33% less TP; 50% less TN sediment nutrient flux for reference condition



## Sediment Diagenesis Analysis – Lake Elsinore

 Greater influence to internal load comes from natural hydrologic variability

CDM Smitl Challenging to detect change with infrequent core-flux measurements



## Sediment Diagenesis Analysis – Lake Elsinore

 Greater influence to internal load comes from natural hydrologic variability

**CDM** Smith Challenging to detect change with infrequent core-flux measurements



## Sediment Diagenesis Analysis – Lake Elsinore

- Keeping lake fuller maintains a larger wetted bottom for flux to occur
- Managed lake condition precludes a nutrient mass based RAA





# Reasonable Assurance Analysis



#### **Reasonable Assurance Analysis**





#### Reasonable Assurance Analysis – Canyon Lake

- Single nutrient control requires ~12,500 kg more dry alum/yr
- Consider alternative alum delivery methods
- Adaptive implementation with milestones to assess progress and any further control needs

| Total Phosphorus (kg/yr)                                      | East Bay | Main Lake |
|---------------------------------------------------------------|----------|-----------|
| Current External Load Retained (with existing watershed BMPs) | 516      | 2,548     |
| Allowable Load                                                | 419      | 1,110     |
| Load Reduction Required                                       | 97       | 1,437     |
| Estimated Nutrient Reduction from Alum<br>Additions           | 386      | 1091      |
| Unmet Load Reductions                                         | -289     | 346       |



- Managed lake condition precludes a nutrient mass based RAA
- Linkage Analysis scenarios to evaluate implementation of all existing controls and assess need for supplemental project
  - Existing controls include 1) levee, 2) supplemental water, 3)
     LEAMS, and 4) fishery management

| Parameter                              | Scenario 1: Reference<br>Conditions | Scenario 2: Current<br>development, no WQ controls | Scenario 3: Current development,<br>with existing WQ controls    |  |
|----------------------------------------|-------------------------------------|----------------------------------------------------|------------------------------------------------------------------|--|
| Lake Elsinore Spill Elevation (ft msl) | 1255                                | 1255                                               | 1255                                                             |  |
| Hypsography                            | Without levee                       | Without levee                                      | With levee                                                       |  |
| Inflow TP (mg/L)                       | 0.32                                | 0.51                                               | 0.46                                                             |  |
| Inflow TN (mg/L)                       | 0.92                                | 1.89                                               | 1.78                                                             |  |
| Internal TP Flux (mg/m2/day)           | 7.1                                 | 9.0                                                | 5.4                                                              |  |
| Internal TN Flux (mg/m2/day)           | 50                                  | 100                                                | 58                                                               |  |
| EVMWD discharge                        | None                                | None                                               | Reclaimed water – 7.5 mgd w/TDS<br>700, TP 0.5 mg/L, TN 3.0 mg/L |  |
| Runoff Flow                            | U                                   | USGS gauge + local runoff estimate (1916-2016)     |                                                                  |  |
|                                        |                                     |                                                    |                                                                  |  |

CDM Smith

 Reclaimed water at 7.5 MGD over 1916-2016 hydrology would have maintained water levels above ~1237 all of the time





- Reference is Scenario 1 results
   same as Scenario 2 for water
   level
- Current with Controls is Scenario 3 results
- Current with Levee only results from September TF meeting

 Addition of reclaimed water creates lower TDS than reference condition 50 percent of time





- Reference is Scenario 1 results

   same as Scenario 2 for water
   level
- Current with Controls is Scenario 3 results

- Conduct assessment to evaluate progress towards TMDL compliance based on benefits obtained from supplemental project implementation
  - Develop a CDF from measured data collected during TMDL implementation
  - Run lake model for reference conditions during TMDL implementation period with no in-lake controls, initial conditions from Scenario 1 in 2020 (DRY)
  - Compare measured water quality (reflecting existing controls) with model results for reference condition for same hydrologic period (Volume weighted DO, surface chlorophyll-a, depth integrated ammonia-N)





# Implementation Schedule



### **Implementation Framework**

- Phase 1 Post-2004 TMDL project activities completed to date:
  - Alum applications
  - LEAMS
  - Fishery management
  - Watershed BMPs
  - Supplemental water additions
  - Special studies to support TMDL revision
- Phase 2 Revised TMDL with updated schedule to be implemented over next 15-20 years
- Phase 3 Implement, if needed, after completion of Phase 2; achieve attainment of water quality objectives by Year 40



## Implementation Framework – Phase 2

- Implementation Program: 15-20 years
  - Considers time to update existing programs and conceptualize, design, permit, construct and assess effectiveness of new projects:
    - 3-5 years to complete concept, design, and permit (EIR)
    - 3-5 years to secure funding and build project
    - 5-10 years to assess effectiveness
  - Provides time to assess impact/benefit of processes that impact nutrients:
    - Expected increase in addition of supplemental reclaimed water
    - Reduction of nutrients in sediments (taking into account half life)
    - Continued conversion from agricultural to urban landscape
  - Key elements

CDM Smith

- Update existing nutrient control programs, permits, management plans
- Implement supplemental projects, as needed
- Annual monitoring and reporting
- Periodic assessment every 5 years to evaluate progress towards attainment of water quality objectives

#### Implementation Framework – Phase 3

- Phase 2 implementation program will be at a crossroads by Year 20 (or sooner)
- Next steps dependent on periodic assessment evaluation:
  - Are we making adequate progress to attain water quality objectives by Year 40?
    - Continue existing program of implementation with annual monitoring and periodic assessments
  - Are we not making adequate progress?
    - Identify new solutions, including, e.g.,
      - Consider additional projects
      - Revise TMDL based on newest information
      - Consider regulatory options such as revised uses and/or objectives





# Supplemental Projects



# Mystic Lake Drawdown

- Multi-benefit project involving use of mountain front runoff capture in Mystic Lake
  - Increased water supply for EVMWD
  - Increased hydrologic flushing in Canyon Lake
  - Increased overflow and dilution of TDS in Lake Elsinore
  - Highly variable estimated annual runoff from zero to over 20,000 AFY
    - Zero since 2010
    - Long term average ~3,000 AFY







# Mystic Lake Drawdown

- Draining lake by gravity to SJR is not technically feasible
- Three pumping conveyance options considered
  - 4,000 AFY
  - 10,000 AFY
  - 17,000 AFY

CDM

- Anticipated facilities:
  - Intake pipeline (~2,500 LF trenchless construction)
  - Pump station with 15 ft deep wet well
    - Discharge pipeline to overflow channel or SJR



# Mystic Lake Drawdown

- Low flow option (5 cfs)
  - Smaller pipelines and pump station sizes
  - Discharge to existing overflow channel
  - Rough cost estimate \$2.1 million
  - Higher flow options (14 -24 cfs)
    - Discharge pipeline to SJR upstream of Davis Road
      - Rough cost estimate \$16-20 million









- Enhanced treatment for reclaimed water additions
- Alum additions to wet weather inflows
- Treatment wetlands
- Oxygenation
- Dredging
- Indirect potable reuse
- Vegetation management
- Ultrasonic algae control
- Algaecide
- Physical harvesting





# Monitoring Chapter

