Revision of the Lake Elsinore & Canyon Lake Nutrient TMDL

CDM Smith Team & Risk Sciences

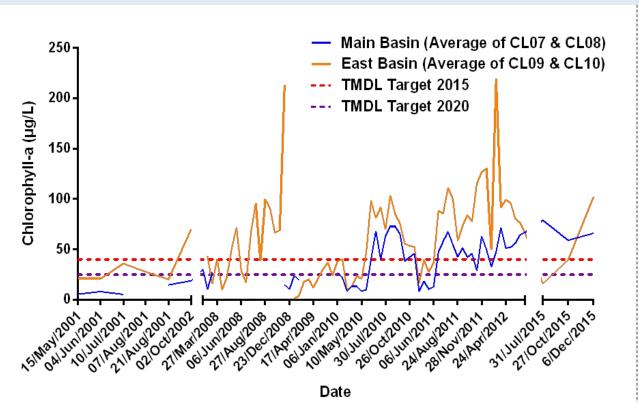
March 22, 2016 Lake Elsinore/Canyon Lake Task Force Meeting

Chapter 3: Numeric Targets Conceptual Approach

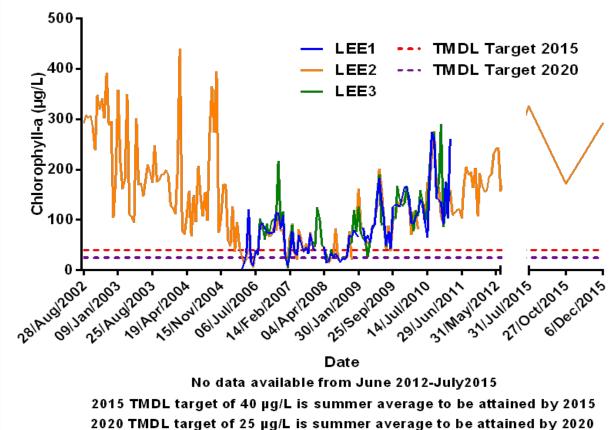
Presentation Outline

- Project Progress/Status
- Existing TMDL Numeric Targets
 - Response Targets
 - Causal Targets
- Conceptual Approach to Establish Revised TMDL Numeric Targets

			2016								2017			2018			2019			2020						
Tasks	Sub- tasks	Activity		F	м	AN	N J		Α	s	0	N	D	Jan-	Apr -	July -	Oct -	Jan-	Apr -	July -	Oct -	Jan-	Apr -	July -	Oct -	Jan-
Tuono	Lasks		J	F	IVI	AN	/I J	J	A	3	0	IN	U	Mar	June	Sept	Dec	Mar	June	Sept	Dec	Mar	June	Sept	Dec	Mar
	1.1	Introduction			-																					
	1.2	Problem Statement	-																							
		Numeric Target (Response)	•																							
		Numeric Target (Causal)	•																							
	1.4	Source Analysis																								
1	1.5	Linkage Analysis						_					ł.													
	1.6	WLA & LA									_			-	•											
	1.7	Implementation Plan																								
		Monitoring Program																								
		References				<u>+ - + -</u>		<u>- </u>	<u>†</u>			+														
	Comple	ete Technical Document														-										
		SED Analysis																								
3	Econor	nics Analysis																-								
		strative Record	-														-				->			-		
		lan Amendment Pkg																								
6	Task Fo	rce Coordination			<u>– –</u>	+		- +	<u> </u>											+						
	Scientif	ic Peer Review																								
sks		f Report						_											•							
Board (RB) Tasks	RB Wor	kshop & Request for Comment				🕨 - 1st	Draft	Deliv	erahle																	
(RB	Response to Public Comments					•															•					
ard	RB Hearing to Consider Adoption of BPA					🔶 - 2nc				e																
Boa	Response to Public Comments to State Board				4	🔶 - Fina	al Del	iverat	le																	
nal	State Board Hearing for BPA			- RB Deliverables/Actions															♦							
Regional	Submit	BPA to OAL					-	-																		
_		view Complete					_	_																		
	Submit	BPA to EPA																								◆


Numeric Response Targets

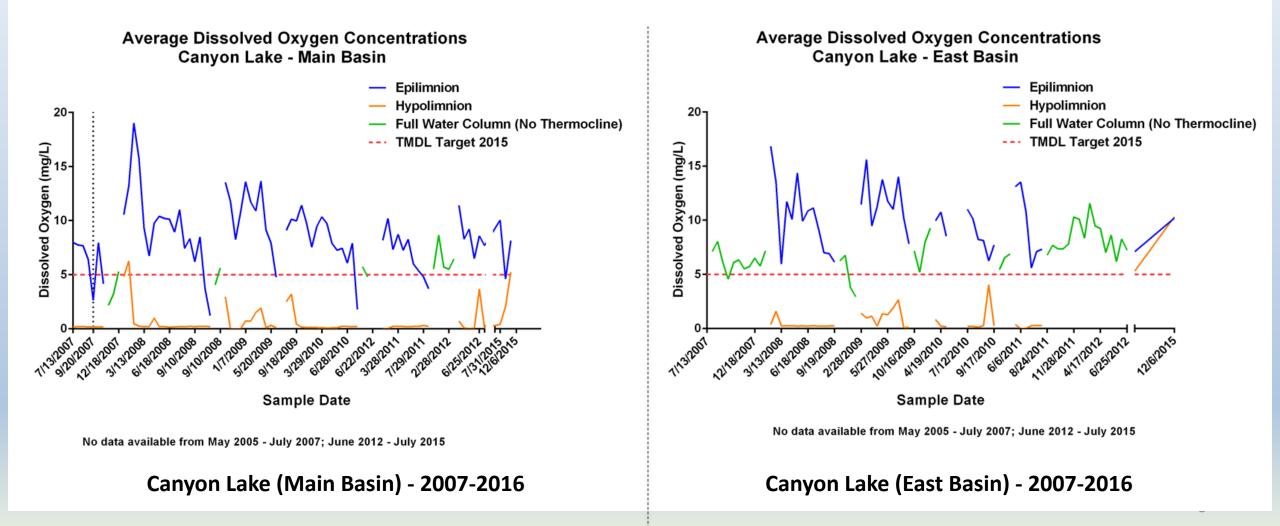
- Chlorophyll *a*
- Dissolved Oxygen
- Ammonia Toxicity


Chlorophyll-a

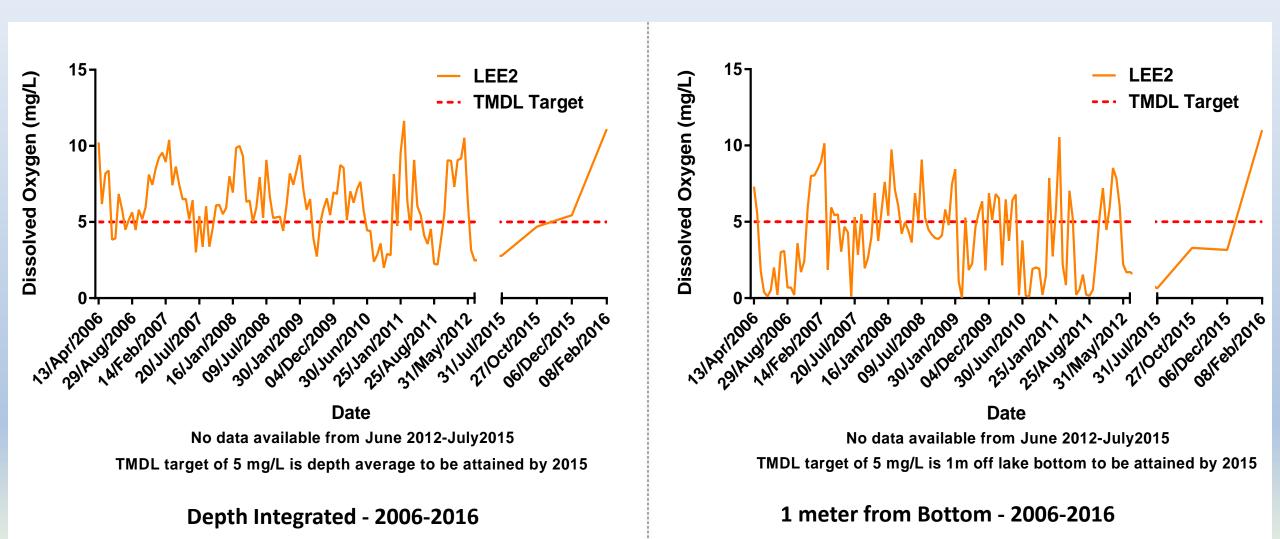
- Averaging Period
 - Annual average for Canyon Lake
 - Summer average for Lake Elsinore
- Undefined Depth
- Interim Target of 40 μ g/L for both lakes
 - Basis: 25th percentile of data collected in 2001-2002, assumed to be a reference condition year for Lake Elsinore (no algal blooms or fish kills; 1,240 foot water level)
- Final Target of 25 μ g/L for both lakes
 - Basis: EPA survey of 894 US lakes and reservoirs defined the range for eutrophic conditions to be 10-25 $\mu g/L$
 - > 25 µg/L represents a hypereutrophic condition based on range of lakes across nation

Chlorophyll a Observations

No data available from October 2002-August 2007; June 2012-July2015 2015 TMDL target of 40 μ g/L is annual average to be attained by 2015 2020 TMDL target of 25 μ g/L is annual average to be attained by 2020


Lake Elsinore – 2002-2015

Canyon Lake – 2001-2015


Dissolved Oxygen

- Instantaneous Target: Criteria to be met at all times
- Basis: Translation of narrative dissolved oxygen water quality objective The dissolved oxygen content of surface waters shall not be depressed below 5 mg/L for waters designated WARM
- Lake Elsinore
 - Interim: Depth integrated average > 5 mg/L
 - Final: > 5 mg/L, 1 meter from lake bottom
 - Final: > 2 mg/L from 1 meter to lake bottom
- Canyon Lake
 - Interim: all depths above thermocline > 5 mg/L
 - Interim: > 2 mg/L within bottom 1 meter (subject to new information)
 - Final: hypolimnion > 5 mg/L (subject to new information):

Dissolved Oxygen Observations – Canyon Lake

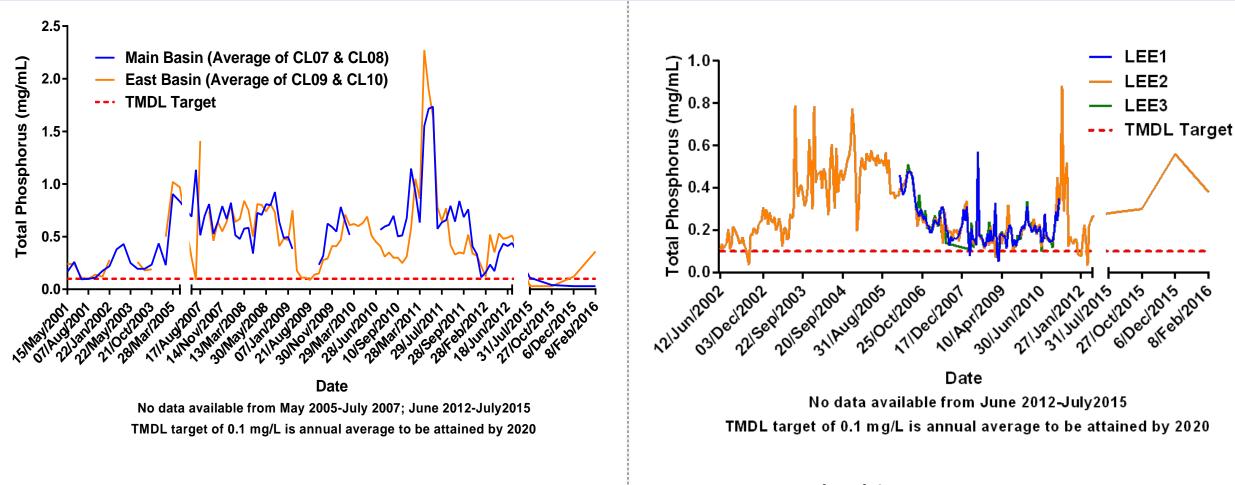
Dissolved Oxygen Observations – Lake Elsinore

Ammonia Toxicity

- US EPA 1999 ammonia toxicity criteria basis for calculated concentration of un-ionized ammonia NH₃
- Acute (30-day) and chronic (1-hour) thresholds for ammonia nitrogen exceeded no more than once in 3 years, on average

pH-dependent values of ammonia acute toxicity criteria (total ammonia nitrogen, in mg N/L)			xicity I en	nperatur al ammo		ogen, i	n mg N		for am	monia	chronic	c criteria
	рН	CMC		14	16	18	<i>.)</i> 20	22	24	26	28	30
	8.0	8.41		14	10	10	20	22	24	20	20	30
	8.5	3.20	pH 8.0	2.430	2,210	1,940	1.710	1.500	1.320	1.160	1.020	0.897
	8.6	2.65	8.5	1.090	0.990	0.870	0.765	0.672	0.591	0.520	0.457	0.897
	8.7	2.20	8.6	0.920	0.836	0.735	0.646	0.568	0.449	0.439	0.386	0.339
	8.8	1.84	8.7	0.778	0.707	0.622	0.547	0.480	0.422	0.371	0.326	0.287
	8.9	1.56	8.8	0.661	0.601	0.528	0.464	0.408	0.359	0.315	0.277	0.244
	9.0	1.32	8.9	0.565	0.513	0.451	0.397	0.349	0.306	0.269	0.237	0.208
	9.5	0.70	9.0	0.486	0.442	0.389	0.342	0.300	0.264	0.232	0.204	0.179
	10.0	0.50		•								

• New US EPA toxicity criteria developed in 2013

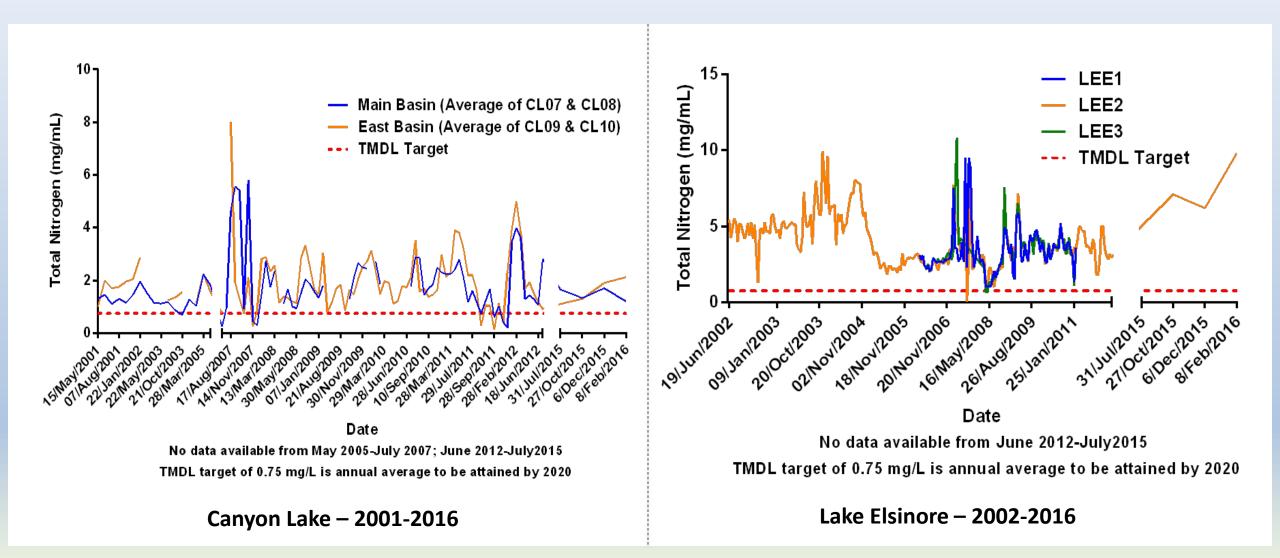

Numeric Causal Targets

- Total Phosphorus
- Total Nitrogen

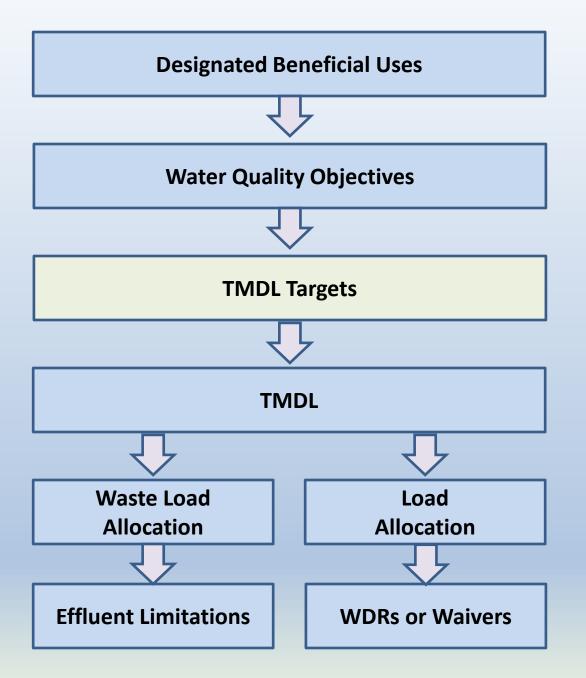
Total Phosphorus

- Numeric Target: 0.1 mg/L for both Lake Elsinore and Canyon Lake
 - Annual averaging period
 - Depth integrated average concentration
- Basis for Target:
 - 25th percentile of 2001-2002 data for Lake Elsinore, assumed to be a reference condition year for Lake Elsinore (no algal blooms or fish kills; 1240' water level)
 - Lake Elsinore calculated target cross-applied to Canyon Lake
- Other Targets Considered:
 - Initially proposed 0.1 mg/L as interim (2015) target, but changed it to 0.1 mg/L as the final (2020) target in Supplemental Staff Report (December 20, 2004)
 - Initially, a lower target of 0.05 mg/L total phosphorus was proposed, but target was found to be unachievable even in a completely forested watershed

Total Phosphorus Observations


Canyon Lake – 2001-2016

Lake Elsinore – 2002-2016


Total Nitrogen

- Numeric Target: 1.0 mg/L for both Lake Elsinore and Canyon Lake
 - Annual averaging period
 - Depth integrated average concentration
- Basis: Target TN/TP ratio of 10:1 to maintain nutrient balance for beneficial algal growth (10 times phosphorus target)

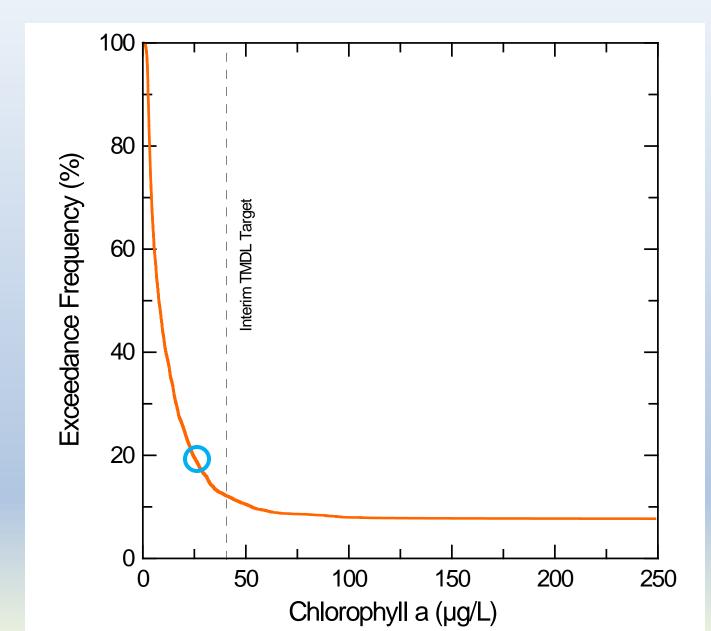
Total Nitrogen Observations

Revising the TMDL Water Quality <u>Targets</u>

Designated Beneficial Uses

Canyon Lake Lake Elsinore

Warm REC-1 & REC-2 MUN Warm REC-1 & REC-2


Water Quality Objectives

Water Quality Objectives	WARM	REC-1 & 2	MUN					
Nitrogen	Lake Elsinore =	1.5 mg/L as TIN	Canyon Lake = 8.0 mg/L as TIN					
Ammonia	Numeric formula (pH & temperature)	N/A	N/A					
DO	<u><</u> 5 mg/L	N/A	N/A					
Algae	"Discharges shall not contribute to excessive algae growth"							
Salinity	Lake Elsinore =	ake = 700 mg/L						
Phosphorus	None							
Chlorophyll-a	None							
Narrative	Discharge of waste shall not degrade aquatic populations	Discharge of waste shall not cause nuisance	No discharge of waste harmful to human health or creating nuisance (taste/odor)					

Problems w/ Current TMDL Targets

- Underestimated natural background loads
- Assumed static lake levels
- Literature-based targets for TP, TN & Chl-a
- Underestimated in-lake nutrient cycling
- Did not evaluate target attainability
- Targets expressed as Not-to-Exceed values
- Did not account for asymmetric loading rates
- Did not specify averaging procedures

Natural Exceedances in Lake Elsinore

21

Natural Exceedances in Canyon Lake

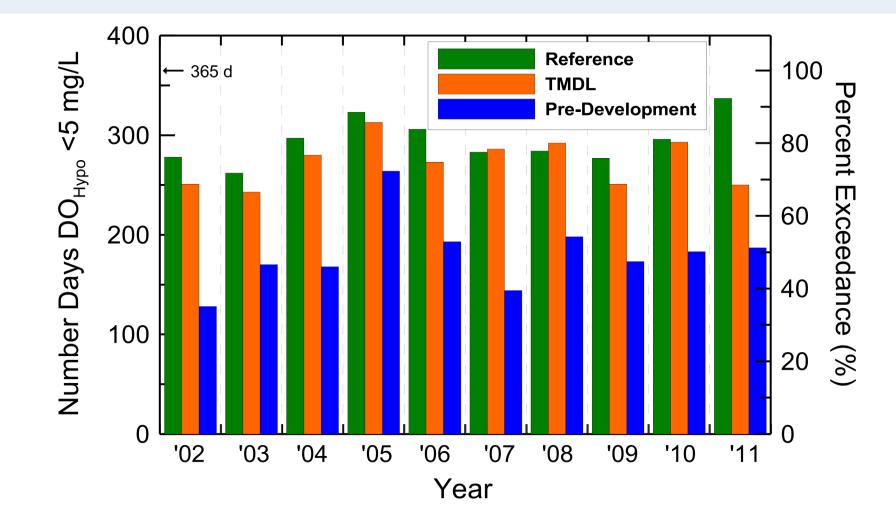


Fig. 8. Number of days each year when hypolimnetic DO concentrations were below the TMDL target of 5 mg/L under the reference (existing) condition, TMDL-prescribed reductions in external loading, and the pre-development scenario.

Broken Linkage Analysis

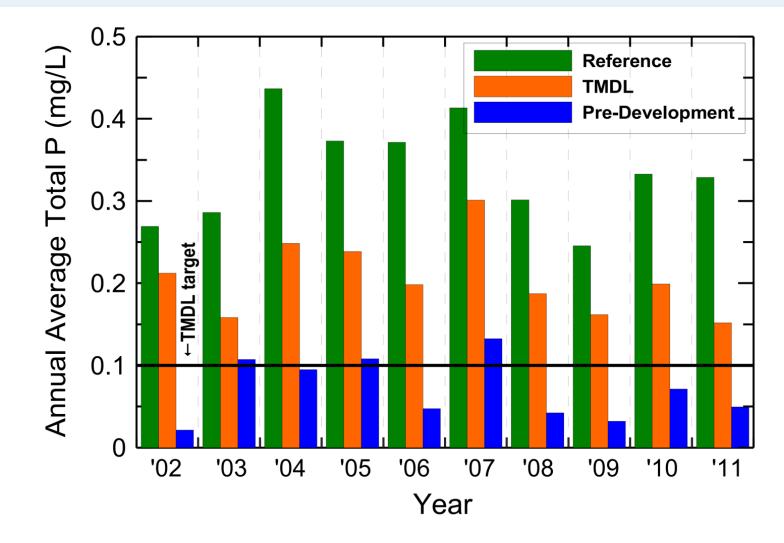


Fig. 4. Annual average total P concentrations under the reference (existing) condition, TMDLprescribed reductions in external loading, and the pre-development scenario.

Dynamic Level of Lake Elsinore

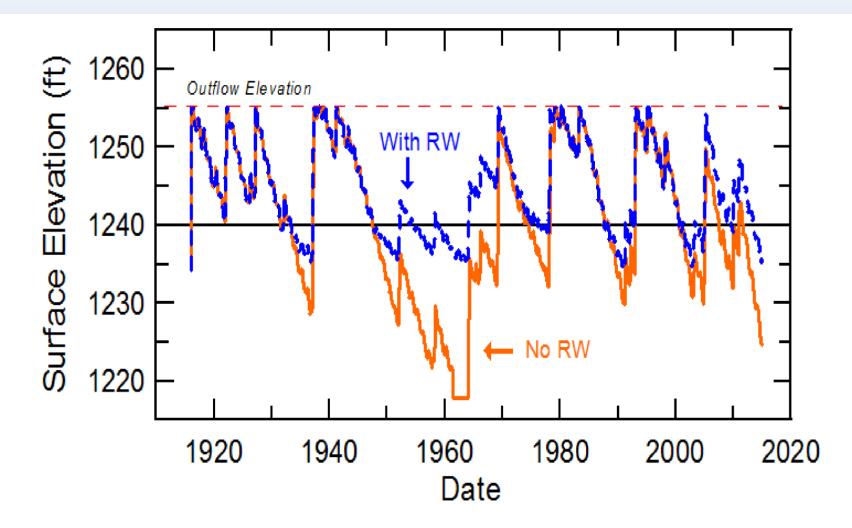
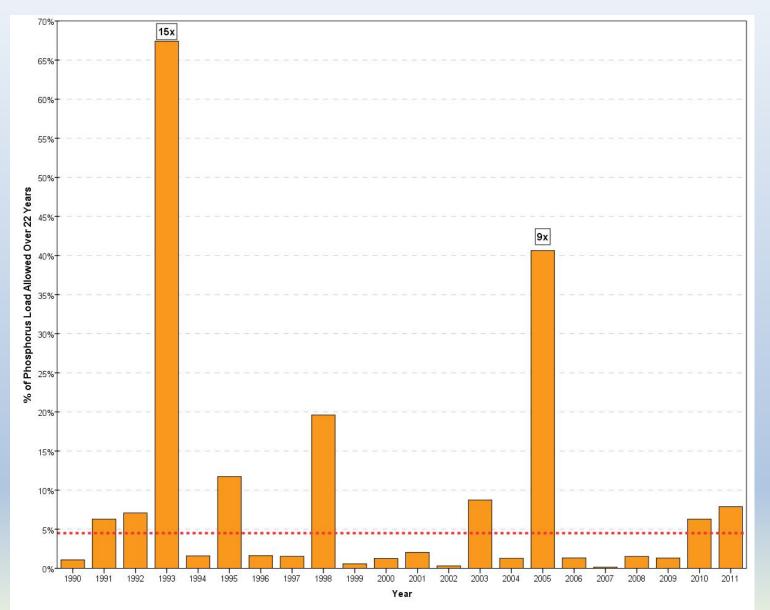
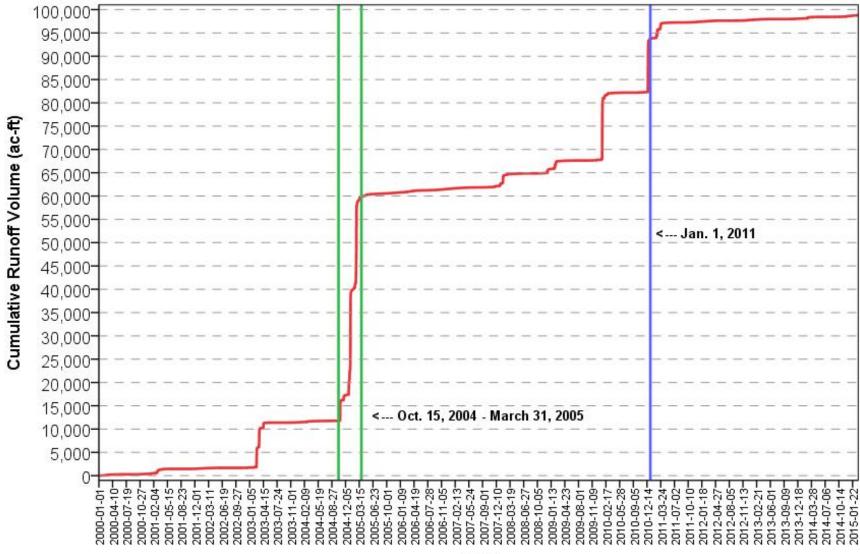
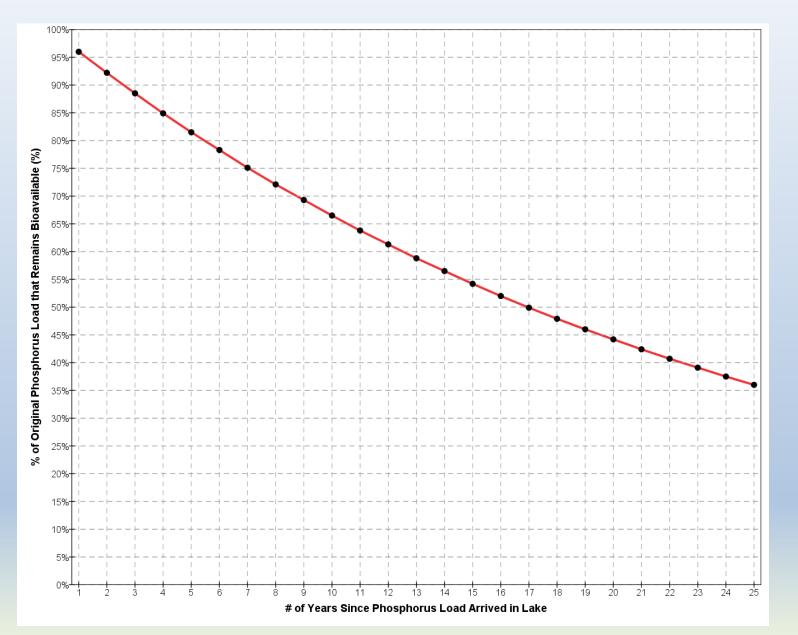




Fig. 1. Lake surface elevation with LEMP basin and natural flows (solid orange line) and supplemented inflows with recycled water (dashed blue line).

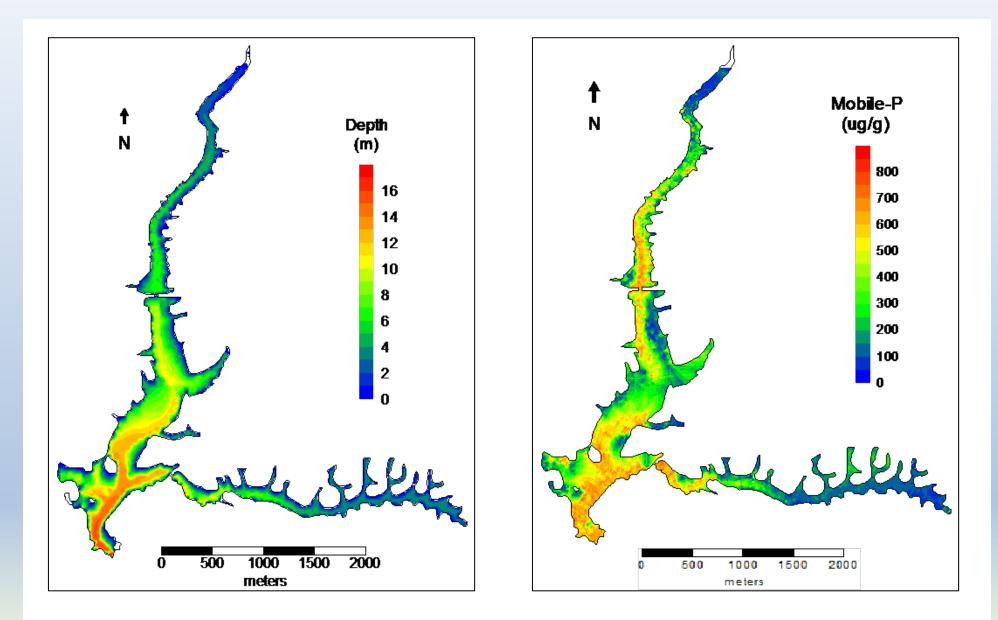
Asymmetric Loading to Canyon Lake

Asymmetric Loading to Lake Elsinore



In-Lake Nutrient Cycling

Table X. Mineralization rate and half-life for total organic C, total N and organic P in East Bay, Canyon Lake and Lake Elsinore.


	k r (<u>)</u>	yr⁻¹)	t _{1/2}			
	1-phase	2-phase	1-phase	2-phase		
Canyon Lake						
Organic C	0.050 ± 0.010	0.113 ± 0.081	13.9 ± 2.9	8.2 ± 5.9		
Total N	0.042 ± 0.002	0.065 ± 0.018	16.5 ± 0.8	11.1 ± 3.1		
Organic P	0.105 ± 0.015	0.125 ± 0.071	6.7 ± 1.0	6.6 ± 3.7		
Lake Elsinore						
Organic C	0.029 ± na	0.047 ± na	23.9 ± na	14.7 ± na		
Total N	0.023 ± na	0.043 ± na	30.1 ± na	16.0 ± na		
Organic P	0.011 ± na	0.023 ± na	60.4 ± na	29.7 ± na		

Slow Decay Rate for Phosphorus

28

Canyon Lake Bathymetry & Sediments

Unique Factors: Lake Elsinore

- Terminal lake w/ very little flushing flow
- Periodically DRY under natural conditions
- Naturally-elevated TDS concentrations
- Artificially maintained ecosystem
 - Levee constructed in 1996
 - Recycled water added since 2002
 - Large-scale fishery management program
 - Aeration and mixing system since 2008

Unique Factors: Canyon Lake

- Ratio of watershed area to lake area
- Reservoir operated with little flow-through
- Min. lake level required by contract
- Little hydraulic interaction between branches
- East Bay extremely shallow

Unique Factors: Both Lakes

- Low average precipitation
- Extreme asymmetry in runoff
- High evaporation rates
- Abundant sunshine
- No natural reset mechanism

Target-setting Approach

- Literature Values
- Reference Conditions
 - Nutrient loads from the undeveloped watershed
 - Simulations of the pre-development condition
 - Corroborated by historical records
- Highest Sustainable Use
- Best Available Technology (BAT)
- Net Environmental Benefit (EPA's EDWP)

Reference Conditions

- Lake Elsinore in 1972 & 1994 (pre-LEMP)
- Pre-development land use assumptions
- Validated natural background loads
- Variable lake levels and water quality
- No recycled water
- No aeration and mixing system
- Limited fishery management program

TDS in Lake Elsinore

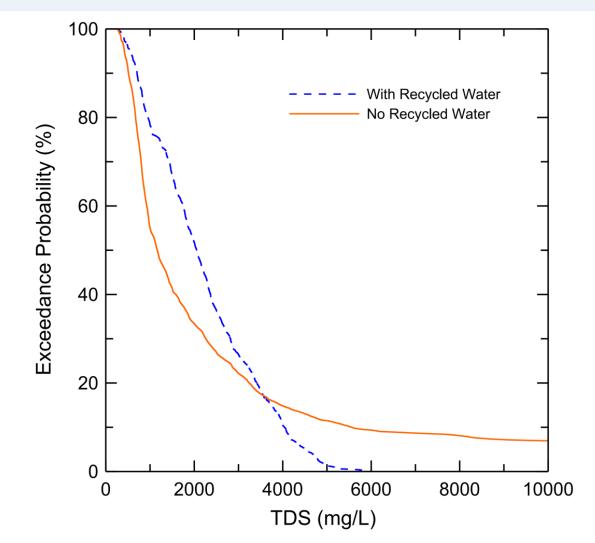
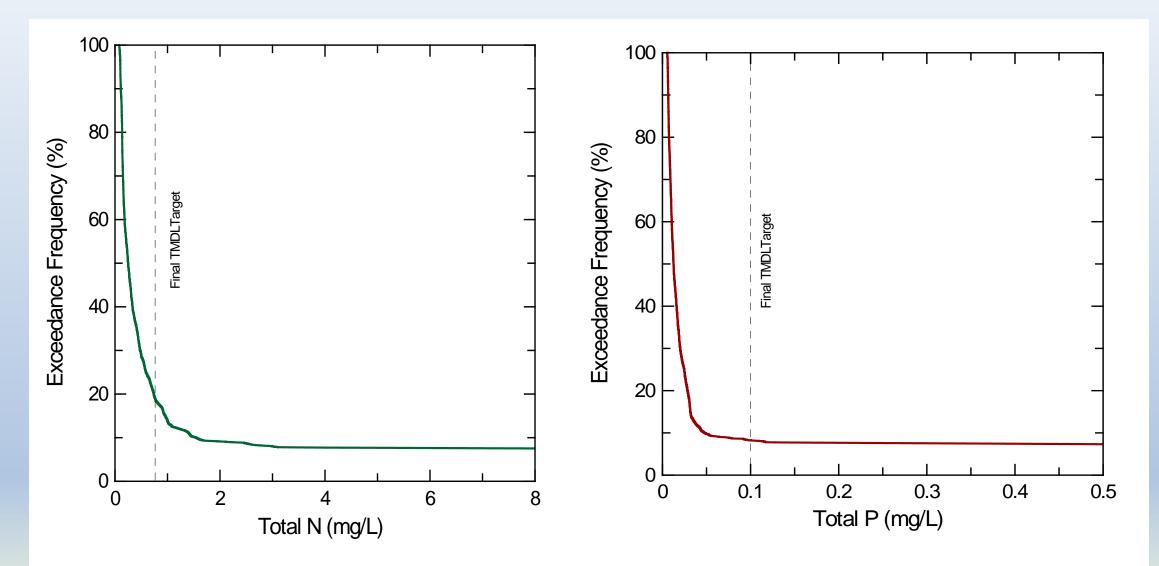
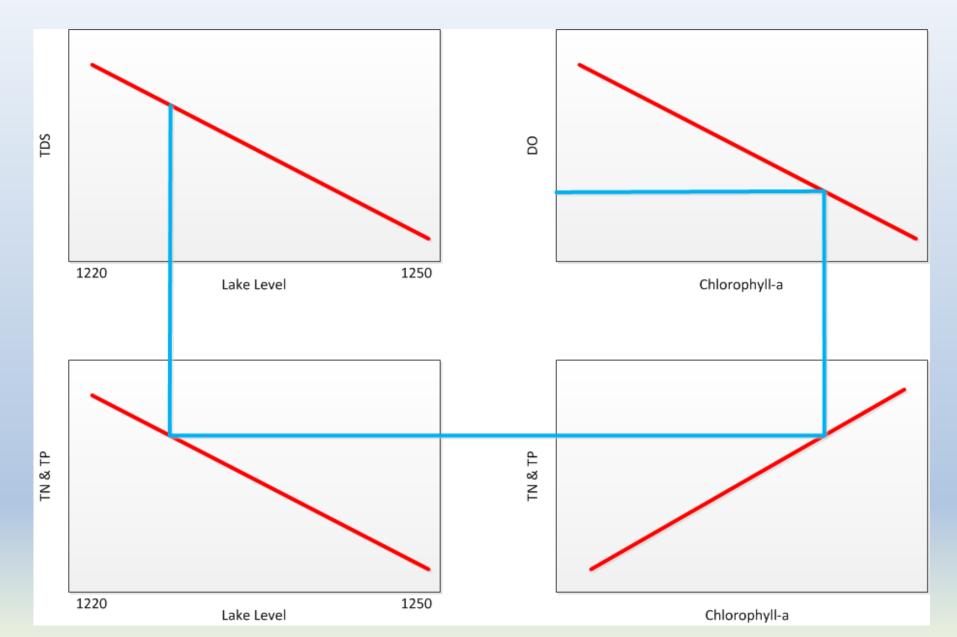
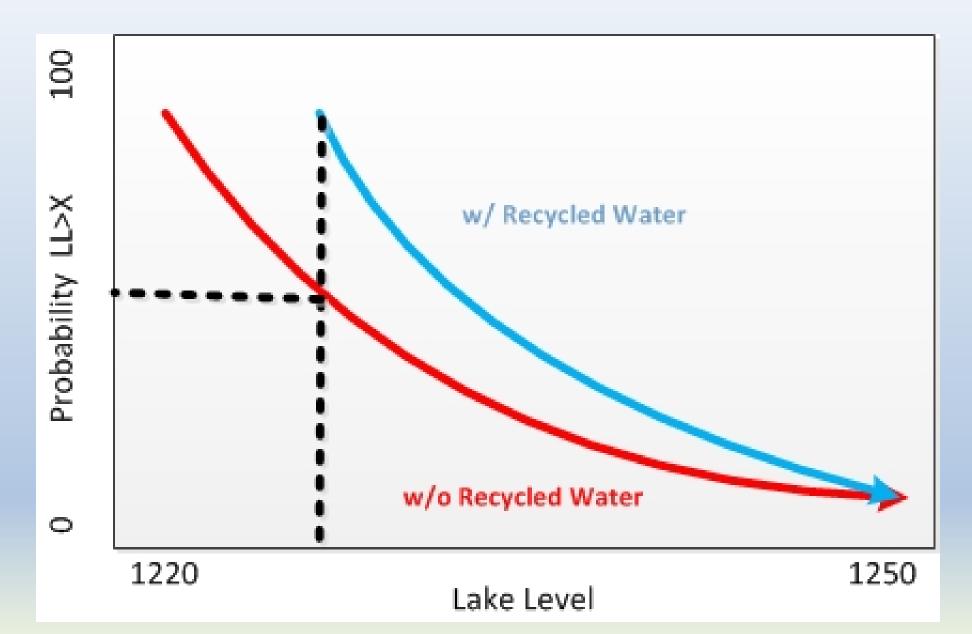
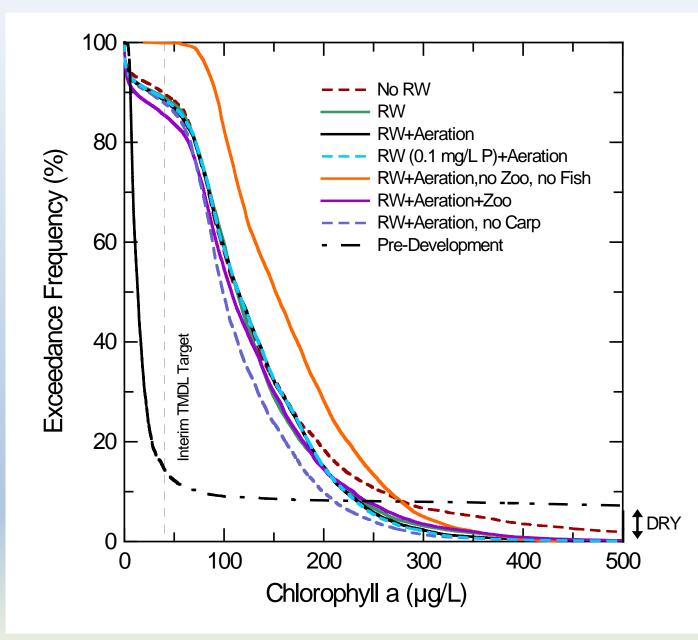




Fig. 6. Cumulative distribution function showing exceedance probability for TDS concentrations for the LEMP basin with natural flows (solid orange line) and inflows supplemented with recycled water (dashed blue line).


Nutrients in Lake Elsinore

Conceptual Target Derivation

Net Environmental Benefit



Net Environmental Benefit

Mean Predicted Values: 1916-2014

	Mean Concentration (mg/L or µg/L)							
	DO	Total N	Total P	Chl a				
Pre-Development	7.77	0.59	0.02	19.0				
Current/no RW	8.85	4.27	0.27	140				
With RW	8.30	4.20	0.26	125				
With RW+Aeration	9.03	4.01	0.24	125				
With RW(0.1 PO ₄)+Aer	9.02	4.01	0.23	125				

Progress Toward Attainment

Target-setting Goals

- Consider natural background loads
- Consider dynamic lake levels
- Consider asymmetric loading
- Consider slow nutrient decay rates
- Consider full probabilistic range of values
- Consider exceedance frequency
- Consider appropriate averaging strategies
- Consider other water quality constraints
- Consider reasonable attainability
- Consider target hierarchies

Key Concern: EPA Acceptance

- Well-documented reference condition
- Strong support for highest sustainable use
- Clear proof of Net Environmental Benefit
- Credible evidence of BAT & MEP
- Period reassessment required
- May require Interim & Final targets
- Will require long-term compliance schedules
- May require UAA (Intermittent/Limited?)
- May require Site-specific Objectives
- May require variance from water quality standards

Lake Elsinore

Questions & Discussion

Monitoring Impacts

Monitoring Program Impacts

- Numeric targets must be measurable to be effective
- Samples for laboratory analysis cannot be collected daily, across the lakes
- Currently available remote monitoring technologies are limited
- Alternative target setting approach needed

Monitoring Program

- Current Monitoring Plan elements
 - In-situ depth profiling multi-sensor at two Lake Elsinore sites (Temperature, DO, pH, conductivity)
 - Field measured parameters at three site in Lake Elsinore and three sites in Canyon Lake (Temperature, DO, pH, conductivity)
 - Every other month, discreet (hypolimnion, epilimnion) and depth integrated samples collected for laboratory analysis at one site in Lake Elsinore and four sites in Canyon Lake (NO2/3, TAN, TKN, TP, SRP, TDS)
 - Monthly satellite imagery analysis for chlorophyll-a
- Monthly data from single points compared with seasonal and annual targets