# Understanding the Suspended Solids in the Inland Empire Brine Line

SAWPA Workshop December 20, 2011

Gordon Williams, Ph.D., P.E. Trussell Technologies, Inc.



#### **Presentation Overview**

- Review Previous Workshop Findings
- Current Solids Characterization
- Historical Data Analysis
- Next Steps



# PREVIOUS WORKSHOP REVIEW



# Back in September

- Directly measured POC (two samples)
  - Suggested more organics then previously observed by indirect measurements (TOC – DOC)
- Characterized crystalline structures of inorganics (XRD + ICP)
  - Amorphous Calcium Phosphate (ACP) & Calcite bulk of inorganics
- Large fraction of VSS remained unknown
  - Water?
  - Ratio of TOC to organic solids?
  - Other inorganic volatilization?



#### Estimate of Solids Breakdown



Applies only to September TT Samples



#### **Estimate of Solids Breakdown**





#### Next Steps from September

- Continue to quantify the solids make-up
  - Two months of sampling to improve understanding of variability in solids over time
  - XRD, ICP, TSS/VSS, optimize POC measurements
- Explain more of unknown fractions
  - Unknown nVSS → SEM-EDX
  - Unknown VSS → TGA and organics characterization
- Characterization of the organics
  - FTIR, EEM, HPC, fluorescence microscopy



# CHARACTERIZATION OF SOLIDS TODAY



#### Overview of analyses

Brine Line Solids at County Line

Inorganic analyses

- 1. Mineral composition (XRD)
- 2. Elemental composition (ICP, EDX)
- 3. Waters of hydration (TGA)

Other analyses

Organic analysis

Solids Analysis

1. TSS/VSS

- Estimate organic contribution from indirect and direct POC measurements
- 2. Organic matter characterization (TGA, FTIR, EEM)
- 3. Biological characterization (HPC, fluorescence microscopy)



# DETERMINING THE MAKEUP OF THE INORGANICS



#### Elemental analyses verifies predominance of Ca

#### Elemental Analysis:

- Babcock & MWH: ICP of redissolved solids
- Camet Labs: EDX of solids
- Conclusions:
  - Ca is predominant mineral
  - P is high
  - Si is also significant

| 12080                                       | )1    |        |   |   |      |    |    |    |  |   |
|---------------------------------------------|-------|--------|---|---|------|----|----|----|--|---|
|                                             |       |        |   | C | а    |    |    |    |  |   |
|                                             |       |        |   |   |      |    |    |    |  |   |
|                                             |       |        |   |   |      |    |    |    |  |   |
|                                             |       |        |   |   |      |    |    |    |  |   |
|                                             |       |        |   | П |      |    |    |    |  |   |
|                                             |       |        |   | П |      |    |    |    |  |   |
|                                             |       |        |   | Н |      |    |    |    |  | H |
|                                             |       |        |   | П |      |    |    |    |  |   |
|                                             |       |        |   | П |      |    |    |    |  |   |
|                                             |       |        |   | П |      |    |    |    |  |   |
|                                             |       |        |   | L |      |    |    |    |  |   |
|                                             |       |        |   |   |      |    |    |    |  |   |
|                                             |       | P      |   | ı |      |    |    |    |  |   |
|                                             |       |        |   | ı |      |    |    |    |  |   |
|                                             | 5     | l      |   | ı |      |    |    |    |  |   |
| _                                           | A     |        | - | H |      |    |    |    |  |   |
| 0                                           | 1     | _      |   | ı |      |    |    |    |  |   |
| ¢а                                          | Na    | P CI   |   | ı |      |    |    |    |  |   |
|                                             |       | i S    | к | J | Ca_  |    | FΔ |    |  |   |
| Ca                                          | Me VI | M \$ 0 |   | ( | Ti - | Γi | Fe | Fe |  | L |
| 5.                                          |       |        |   |   |      |    |    |    |  |   |
|                                             |       |        |   |   |      |    |    |    |  |   |
| Cursor=                                     |       |        |   |   |      |    |    |    |  |   |
| Vert=4423 Window 0.005 - 40.955= 174545 cnt |       |        |   |   |      |    |    |    |  |   |

| Sludge | results | ICP    |  |
|--------|---------|--------|--|
|        | % of    | g/Kg   |  |
|        | mass    | 8/ 1/8 |  |
| Ca     | 62.2%   | 125    |  |
| Р      | 15.1%   | 50     |  |
| Si     | 9.4%    | 25     |  |
| Fe     | 3.8%    | 5      |  |
| Al     | 2.2%    | -      |  |
| Mg     | 1.4%    | 8      |  |
| S      | 1.3%    | 9      |  |
| K      | 1.1%    | 3      |  |
| Na     | 0.7%    | 8      |  |



# Mineral Identification: X-Ray Diffraction (XRD)

Identifies samples based on their crystalline structure



- CaCO<sub>3</sub> + amorphous calcium phosphate (ACP) = ~80-90% of minerals
- SiO<sub>2</sub> (1-2%)



# Example of recent XRD result



# Example of recent XRD result



#### Findings:

- 5 additional rounds of XRD show consistent results
- Only 3 mineral species found:
  - Calcite (CaCO<sub>3</sub>)
  - ACP/hydroxyapatite [Ca<sub>5</sub>(PO<sub>4</sub>)<sub>3</sub>OH]
  - Quartz

#### **Conclusions:**

Calcium minerals are the dominant inorganic fraction



#### XRD shows calcium minerals dominate

- Next question: how much is present?
  - XRD: only semi-quantitative info on mineral fraction
- 2-step process





# Inorganics - Summary

- Conclusions: same answer as last time
- Ca + Si minerals: >90% of nVSS (41 of 45%)





# DETERMINING THE AMOUNT AND COMPOSITION OF ORGANICS



# What is the organic material?

- Biological organic matter?
  - Initial hypothesis for solids formed in line

- Testing for presence of biological material
  - Bacterial cell culture: heterotrophic plate counts (HPC)
  - Fluorescence microscopy
  - Chemical analyses: Fourier-transform infrared analysis (FTIR), excitation-emission matrix (EEM)
  - Physical assays: thermogravimetric analysis (TGA)



# HPC suggests low biological content

Culturable heterotrophs account for ~0.3% of the

TSS mass



- Limitations of HPC:
  - Only measures culturable heterotrophs
  - Selects for certain bacterial types over others (aerobic vs. anaerobic)

## Microscopy supports low biological estimates

- Method: microscopic analysis of live/dead bacteria
  - Green dye: living bacteria
  - Red dye: dead bacteria



## Microscopy supports low biological estimates

- Method: microscopic analysis of live/dead bacteria
  - Green dye: living bacteria
  - Red dye: dead bacteria



Mass concentration of bacteria still small (~1%) (note: based on one sampling date)



## Chemical analyses support biological estimates

- FTIR (Fourier-Transfer Infrared) Results
  - Low bio content based on comparison with biological control
  - Side note: potential match with fossil material (CaCO<sub>3</sub> and HA)?
- Excitation-emission matrix (EEM) results
  - SAWPA solids show different profile than biological control





# If it's not biological organic matter, then what is it?



# Thermogravimetric Analysis (TGA)

#### Continuous measurement of mass change with temp





# TGA suggests new organic candidate





# TGA suggests new organic candidate



# The one major TGA spike suggests: cellulose or cellulosic material





Visual inspection: Wet solids





#### Dried solids





Dried solids: A closer look





Dried and ground solids





Dried and ground solids: A closer look





Dried and ground solids: A closer look



Cellulose hypothesis passes the visual inspection



- From the FTIR report:
  - Peak in all 3 SAWPA samples may indicate presence of "cellulose or other polymeric carbohydrate material...wood, paper, cellophane, and cellulose derivatives"



- Fluorescence Microscopy
  - Cellulose = blue
  - Live cells = green
  - Dead cells = red





- Fluorescence Microscopy
  - Cellulose = blue
  - Live cells = green
  - Dead cells = red







- Fluorescence Microscopy
  - Cellulose = blue
  - Live cells = green
  - Dead cells = red



### How much cellulose is there?

 From TGA analysis, we can quantify the amount of cellulosic material from the spike

### **Cellulosic Material:**

Avg: 34% of TSS

4 samples: 31-37%

### Other VSS:

Avg: 22% of TSS

4 samples: 19-23%



## Organic Carbon Analysis

- What fraction of the solids is organic?
- Particulate organic carbon (POC) → organic matter
- Indirect POC
  - Measure raw sample (TOC)
  - Measure filtered liquid (DOC)
  - POC = TOC DOC
- Direct POC







- Measure the TOC of the suspended solids (POC =  $TOC_{ss}$ )
- Previous results: Direct POC (TT) > Indirect POC



### Limitation of OC Liquid Suspensions

Well-mixed suspension of brine line sample



**TOC Sample Vial** 



Large particulates may settle or become clogged in instrument tubing: Need another method



## **Organic Carbon Analysis**

### **Direct POC (Babcock soil instrument)**

- Detects significantly more OC than direct POC (TT), indirect POC (TT, BL)
- Best method for POC measurement

#### **Findings**

- Significantly more OC in SAWPA solids than previously thought
- •POC accounts for 23% of TSS (2 samples tested)
  - 2/3 is Cellulose; 1/3 is bio-organic matter
- Converting this to total mass
  - Cellulose = 34% of TSS (TGA) (assumes OC/SS = 44%)
  - Bio-organic matter = 13% of TSS (assumes OC/SS = 60%)
- Organic mass now explains most of VSS



# **Organics Summary**

- Organic content higher than previously thought
- Most of organic mass is cellulose-like material
- Biological contribution is low: HPC, FTIR, microscopy, EEM
- Previous hypotheses:
  - Biological material
  - Organic precipitates
  - Organic particulates discharged into Brine Line



# SUMMING IT ALL TOGETHER INORGANICS + ORGANICS



### Estimate of TSS Breakdown\*



nVSS = non-VSS = inorganic fraction
\*Based on 6-sample avg. of TSS, VSS data



### Add in what we learned about VSS





# Putting It All Together





# UNDERSTANDING THE PROBLEM: A LOOK AT HISTORICAL DATA





Breakdown by Flow









**Breakdown by TSS Load** 





Breakdown
By
Suspended
Solids Source







### What comes out of the Brine Line\*





### Current Estimate of Solids Breakdown





# What can be done to control solids formation?

- Cellulose: mostly inert and not likely to form in the line
- Biological organic matter: control options not feasible
- Calcite & ACP: changes in pH may help control formation
- Data: Possibility for increasing data accuracy by increasing collection frequency



# **NEXT STEPS**



### **Next Steps: Solids Formation Control**

- 1. Assess pH Reduction Strategy
  - a. Conduct Survey of discharger practice
    - 1) pH before/after adjustment
    - 2) Caustic use
  - b. Conduct Bench-scale study
    - 1) Solids @ Co. line,
    - 2) Upstream blends
  - c. Assess potential
- 2. Continue *special* direct POC measurements, include discharger survey
- 3. Continue *routine* TOC and Ca measurements for dischargers