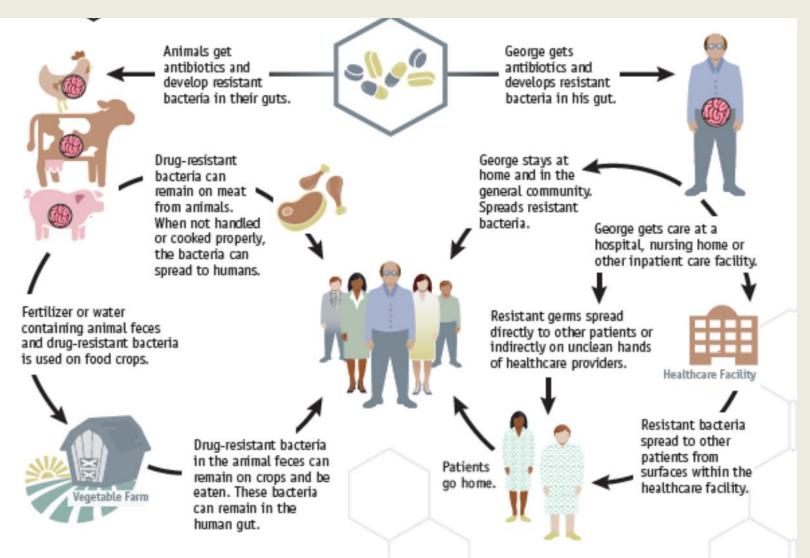
Identifying, Quantifying and Tracking Microbial Contaminants, Antibiotics and Antibiotic Resistance Genes in Order to Protect Food and Water Supplies

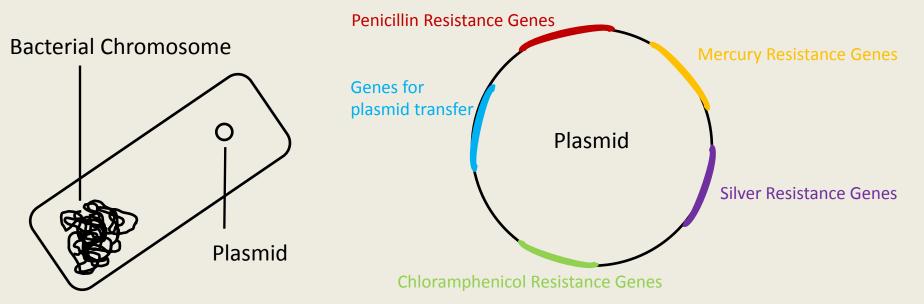
Scott Bradford, A. Mark Ibekwe, and Brendan Headd U.S. Salinity Lab, Agricultural Research Service, USDA, Riverside, CA


Antibiotic Resistance and Public Health

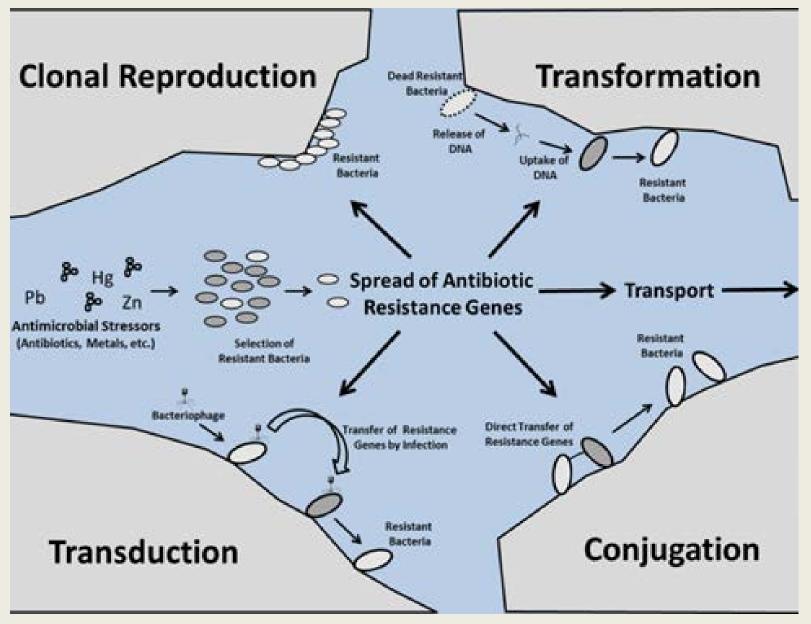
- In the United States each year (according to the CDC):
 - 2 million people are infected with Antibiotic Resistant Bacteria (ARB).
 - At least 23,000 die from the resulting infections.
 - Most infections occur in the community, while most deaths occur in healthcare facilities.
- The use of antibiotics is the most important factor leading to ARB around the world (CDC).
 - ARB arise naturally, but misuse speeds up the process.
 - Up to 50% of antibiotics are not optimally prescribed (CDC).
 - In some US states, the number of prescribed antibiotic treatments exceeds the population (Gross, 2013; Ventola, 2016).

ARB Occurs in Pristine Soils

ARB Increases with Antibiotic Use

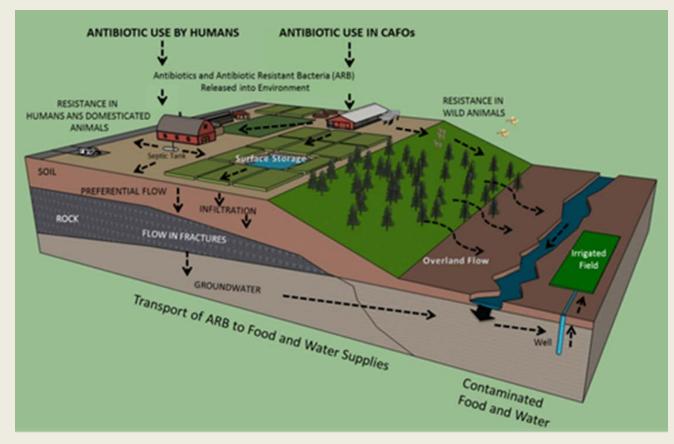


Simply using antibiotics creates resistance. These drugs should only be used to treat infections.

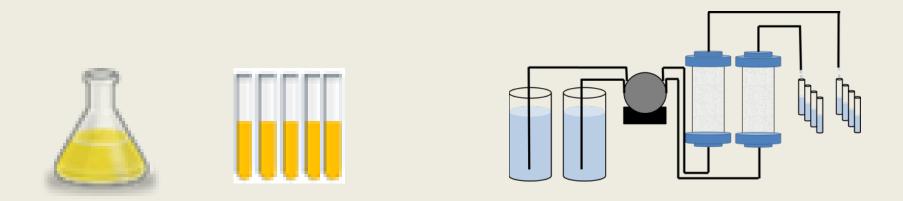

From: www.cdc.gov/drugresistance/about.html

Environmental Stressors and ARB

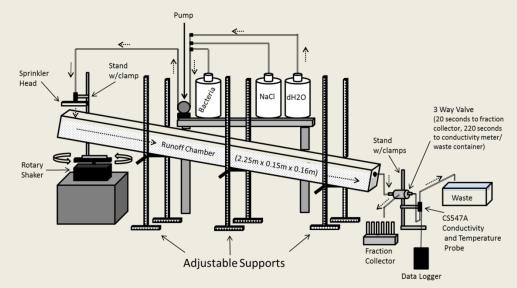
- ARB arise naturally due to stressors in the environment
 - Antibiotic resistance genes (ARGs) are often found on plasmids.
 - These plasmids contain resistance genes to antibiotics, heavy metals, and other pollutants that allow bacteria to survive.
 - The presence of one of these stressors can ensure the survival and dissemination of all the other resistance genes on the plasmid through Horizontal Gene Transfer (HGT).



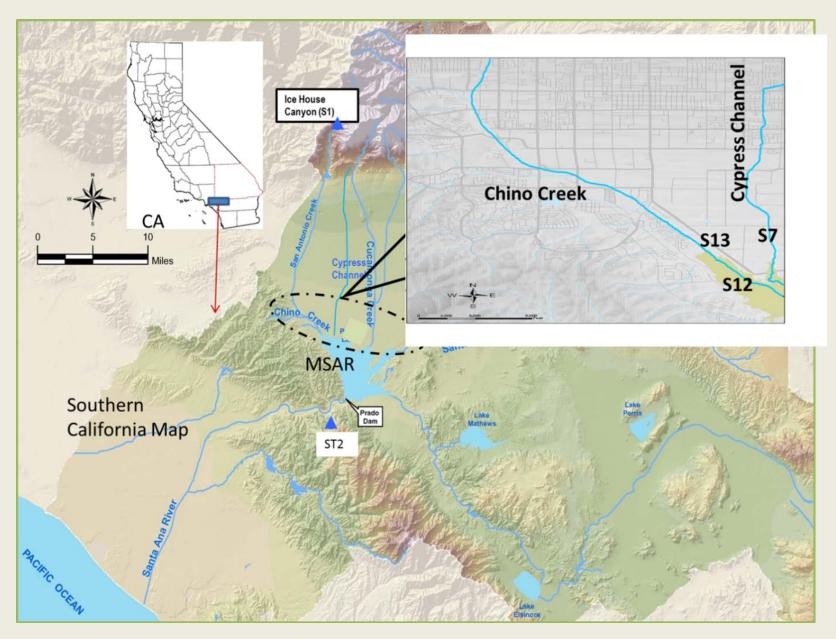
Modes of Antibiotic Gene Transfer


Environmental Fate of ARB

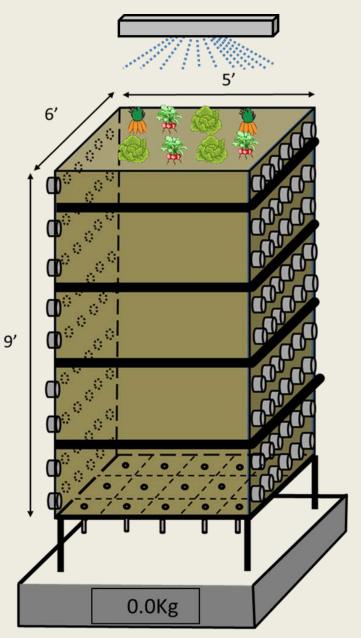
- Factors that influence retention and release of ARB in the nature:
 - Water chemistry, flow velocity, surface properties of bacteria


- What role does HGT play in the spread of ARB/ARGs in nature?
- Under what physiochemical conditions does HGT occur in nature?

Batch and Column Experiments

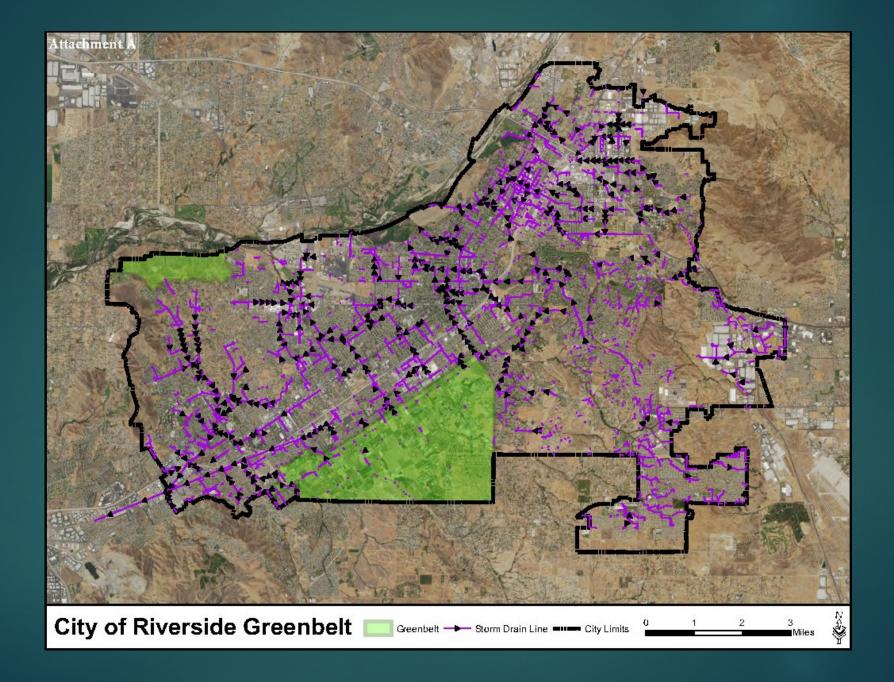

- Goal: Mechanistically study and model the transport, retention, and release of ARB and ARGs.
- Method: Idealized batch and column systems with fluorescent bacteria and selected antibiotic and metal resistant plasmids.
- Outcome: Model and identify environmental stressors and physicochemical conditions required for HGT and transport of ARB.

Runoff Chamber Experiments


- Goal: Investigate factors that influence the development, spread and mitigation of ARB, ARGs, and pathogenic *E. coli* and *Salmonella* in sediment/runoff water from the Santa Ana River watershed.
- Method: Natural sediment and microbial communities spiked with stressors and pathogens in runoff chamber.
- Outcome: Modeling and isolation/identification/quantification of environmental pathogenic bacteria and ARGs.

Sample Locations - Runoff Chamber

Lysimeter Experiments


- Goal: Investigate the influence of environmental stressors on the development, spread, and mitigation of ARB and ARGs in the root zone
- Method: Crops in unsaturated soil with *in situ* and injected microbes and stressors
- Outcome: Modeling and Identification of HGT in the root zone and uptake of ARB in plants

Summary

- Antibiotic resistance is a growing problem around the world.
- The physiochemical factors that lead to the spread of ARB via HGT in the environment are not well studied.
 - Batch and column experiments will reveal which physiochemical factors most influence HGT.
 - Runoff chamber experiments will reveal the most common ARB and ARGs in the Santa Ana River watershed.
 - Lysimeter experiments will reveal under what physiochemical conditions HGT occurs in the root zone and possible uptake by plants.

Tier 2 Source Investigation in the Arlington Greenbelt

Summer, 2015 Sampling Program

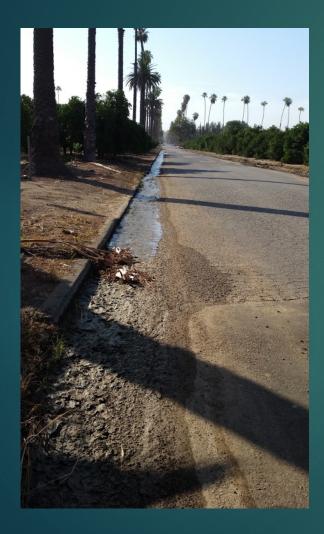
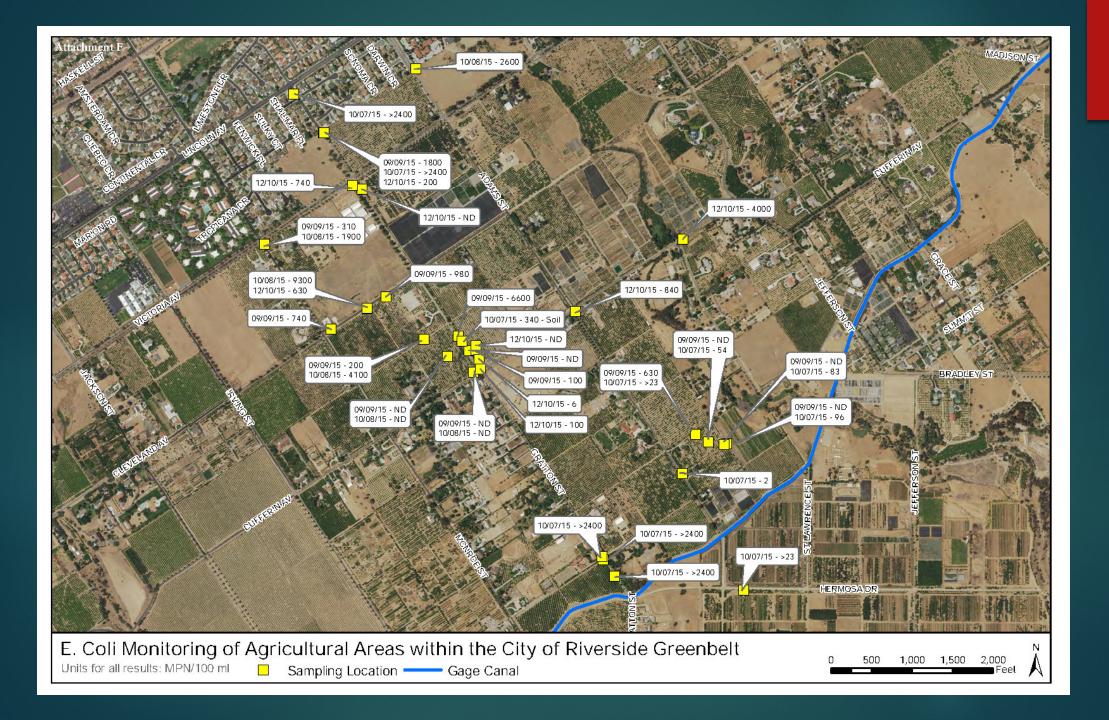

Summer, 2015 Sampling Program

Table 3-4 Samples Collected During Dry Weather 2015											
Sampling Agency	Station Name	Sample Date	Sample Time	Flow (cfs)	Notes						
District	MonroeAg01	5/27/2015	11:55 AM	0.03	•	Bubbles forming at surface					
District	MonroeAg01	6/2/2015	7:20 AM	0.025	F	Excessive leaf litter upstream of sampling location					
District	MonroeAg01	6/8/2015	7:25 AM	0.043		Excessive leaf litter upstream of sampling location					
District	MonroeAg01	6/16/2015	9:00 AM	0	-	No flowing water from any direction, all inlets were dry					
District	MonroeAg01	6/23/2015	8:40 AM	0	•	All inlets are dry flow of water (south to north) along Monroe that stops about 70' from SE corner of Monroe and Victoria					
District	MonroeAg01	8/17/2015	8:38 AM	0.00456							
District	MonroeAg02	6/2/2015	7:45 AM	0.05	•	Sampled water on eastern side of Gratton St.					
District	MonroeAg02	6/8/2015	7:55 AM	0.028	•	Sampled water on western side of Gratton St. Water flows past sampling location into catch basin at corner of (SW) Gratton St. and Lincoln Ave.					
District	MonroeAg02	6/16/2015	9:20 AM	0.07	-	Sampled water on eastern side of Gratton St.					
District	MonroeAg02	6/23/2015	8:15 AM	0.10	ŀ	sampled water on western side of Gratton St Water flows past sampling location into catch basin at corner of (SW) Gratton St. and Lincoln Ave.					
District	MonroeAg02	8/17/2015	9:03 AM	0.04	•	Sampled water on eastern side of Gratton St. Water flows past sampling location into catch basin at corner of (SW) Gratton St. and Lincoln Ave.					

Summer, 2015 Sampling Program

Table 3-6 Grab Sample Results for the Monroe Stations in the 2015 Dry Season									
Station	Sample Date	Sample Time	E. coli (MPN/100 mL)	Method					
MonroeAg01	5/27/2015	11:55	1600	SM9223B					
MonroeAg01	6/2/2015	7:20	310	SM9223B					
MonroeAg01	6/8/2015	7:25	600	SM9223B					
MonroeAg01	8/17/2015	8:38	700	SM9223B					
MonroeAg02	5/27/2015	12:20	2300	SM9223B					
MonroeAg02	6/2/2015	7:45	410	SM9223B					
MonroeAg02	6/8/2015	7:55	5600	SM9223B					
MonroeAg02	6/16/2015	9:20	4100	SM9223B					
MonroeAg02	6/23/2015	8:15	5500	SM9223B					
MonroeAg02	8/17/2015	9:03	500	SM9223B					

Fall, 2015 Follow-up Sampling



Fall, 2015 Follow-up Sampling

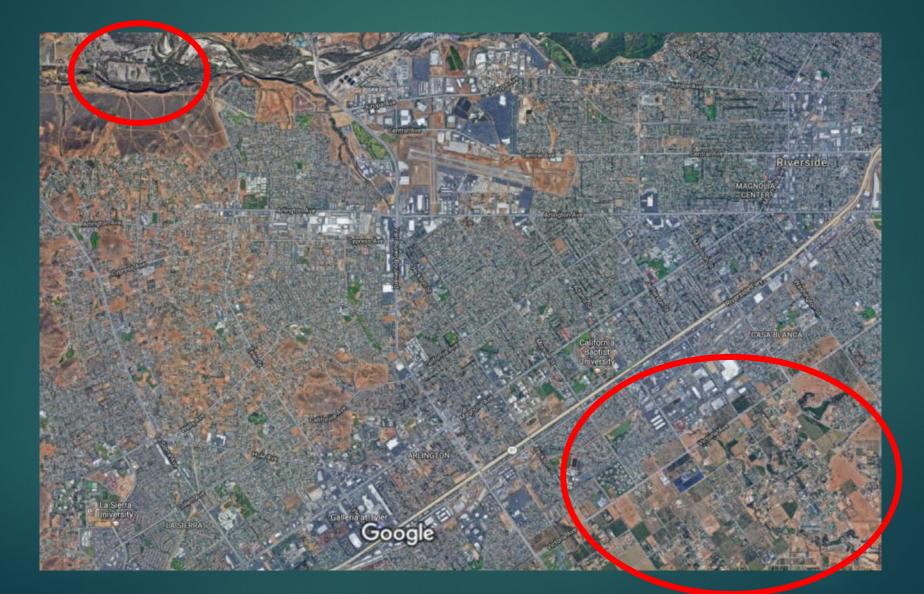
Next Steps:

Bacteroides analysis to exclude human sources

Sanitary survey if human signals are detected

- DNA testing for non-human sources (birds, dogs, critters)
- Recon-level fate and transport study (dry weather conditions)
- Preliminary alternatives analysis for BMPs

Task Force Initiative


Establish a rigorous approach for natural source exceptions

Develop approach for distinguishing ag vs. urban sources

Standardize procedure for addressing bacteria inputs to the MS4 unrelated to Urban Runoff

Potential opportunity for a large-scale regional BMP solution by re-routing dry weather runoff through the Hidden Valley Wetlands

Hidden Valley Wetlands

Funding:

Approved FY 2016-17 Budget: Middle Santa Ana River Pathogen TMDL Task	Force March 14, 2016				
Summary: TMDL Task Force Implementation Schedule and Budget					
Summary Expenses	Task Force Budget 2016-17	SAW Bacteria Monit Budget 2016-17	Tier 2 Source Eval 2016-17	Total Budget 2016-17	
TASK FORCE: Administration (assumes quarterly meetings)	S 30,000			S 30,000	
Grant Proparation	S 20,000			S 20,000	
TASK FORCE: TMDL Contipliance Expert	S 25,000			S 25,000	
TMDL Implementation: Task 3 - Watershed-wide Monitoring Program	S 140,000	5 149,175		S 289,175	
TMDL Implementation: Tasks 4 & 5 - Source Evaluation / Management	S -		5 -	S -	
Estimated Total Annual TMDL Implementation Budget	S 215,000	5 149,175	S -	S 364,175	
Applied Task Force Carryover Funds:	S 100,000			S 100,000	
Estimated Total Stakeholder Cash Contribution	S 115,009	S 149,175	S: -	S 264,175	
Contingency Reserve (estimated):	S 50,000	· ·	S -	S 50,000	
		a 1920			