"101 Workshop"

March 14, 2018

City of Riverside Eastern Municipal Water District

City of Corona Inland Empire Utilities Agency

City of Redlands Orange County Water District

City or Rialto Irvine Ranch Water District

City of Banning Beaumont Cherry Valley Water District

Lee Lake Water District San Bernardino Valley MWD

Chino Basin Watermaster San Gorgonio Pass Water Agency

Yucaipa Valley Water District Jurupa Community Services District

Elsinore Valley MWD W. Riverside Co. Reg. Wastewater Auth.

City of Beaumonth Colton/San Bernardino RTTTWR (RIX)

- 1) What is it and why was it formed?
- 2) What does it do and why is it important?
- 3) What are the future goals and priorities?

Implements the Water Quality Monitoring Program (R8-2005-0063)

- 1) Annual Report of SAR Water Quality
- 2) Ambient Groundwater Quality Update
- 3) Waste Load Allocation Model (WLAM)

A long time ago in a galaxy far, far away....

STATE WATER RESOURCES CONTROL BOARD

RESOLUTION NO. 68-16

STATEMENT OF POLICY WITH RESPECT TO MAINTAINING HIGH QUALITY OF WATERS IN CALIFORNIA

WHEREAS the California Legislature has declared that it is the policy of the State that the granting of permits and licenses for unappropriated water and the disposal of wastes into the waters of the State shall be so regulated as to achieve highest water quality consistent with maximum benefit to the people of the State and shall be controlled so as to promote the peace, health, safety and welfare of the people of the State; and

WHEREAS water quality control policies have been and are being adopted for waters of the State; and

WHEREAS the quality of some waters of the State is higher than that established by the adopted policies and it is the intent and purpose of this Board that such higher quality shall be maintained to the maximum extent possible consistent with the declaration of the Legislature;

NOW. THEREFORE. BE IT RESOLVED:

- 1. Whenever the existing quality of water is better than the quality established in policies as of the date on which such policies become effective, such existing high quality will be maintained until it has been demonstrated to the State that any change will be consistent with maximum benefit to the people of the State, will not unreasonably affect present and anticipated beneficial use of such water and will not result in water quality less than that prescribed in the policies.
- 2. Any activity which produces or may produce a waste or increased volume or concentration of waste and which discharges or proposes to discharge to existing high quality waters will be required to meet waste discharge requirements which will result in the best practicable treatment or control of the discharge necessary to assure that (a) a pollution or nuisance will not occur and (b) the highest water quality consistent with maximum benefit to the people of the State will be maintained.
- In implementing this policy, the Secretary of the Interior will be kept advised and will be provided with such information as he will need to discharge his responsibilities under the Federal Water Pollution Control Act.

Resolution 68-16:

The Antidegradation Policy

Predates:

- 1) 1969 Judgment
- 2) Porter-Cologne Act
- 3) First Basin Plans
- 4) Clean Water Act

The Rancho Caballero Case (1972)

- Receiving Water Quality = 900 mg/L
- Effluent Quality = 755 mg/L
- Basin Plan Objective = 700 mg/L

"Arlington-Riverside Groundwater Basin has no capacity to assimilate..."

BASIN MONITORING PROGRAM ANNUAL REPORT OF SANTA ANA RIVER WATER QUALITY SECTION 3 - ANALYSIS OF MONITORING DATA

1400 700,000 TDS - Non Weighted TDS - Non Weighted 5 yr moving average TDS - Weighted Monthly Ave TDS - Weighted 5 yr moving average

Reach 3 TDS Basin Plan Objective (Baseflow)

Reach 2 TDS Basin Plan Objective 1200 600,000 SAR Discharge 1000 500,000 Discharge (acre-feet/yr) 800 400,000 TDS (mg/L) 300,000 400 200,000 200 100,000 Dec-71 Dec-76 Dec-91 Dec-01 Dec-66 Dec-81 Dec-86 Dec-96 Dec-06 Dec-11 Date K:\projects\PA-20 Basin Monitoring Prog\2014 SAR WQ Basin Monitoring Report/Figures

Figure 3-1. Total Dissolved Solids (TDS) Below Prado Dam

Notes:
TDS Non-Weighted = TDS samples from RWQCB, USGS, HCMP, OCWD.
TDS Weighted = Monthly flow weighted TDS calculated from EC. Data prior to October 2003 from Watermaster,
October 2003 to December 2004 from Weinc, 2005 to 2014 from SAWPA.

The Recycled Water Issue (1991-94)

- Basin Plan Objectives = 400 500 mg/L
- Effluent Quality = 550 650 mg/L
- Receiving Water Quality = 600+ mg/L

Attachment Contents:

B11-1a,b Groundwater Storage and Elevation Contours Fall 2015

B11-2a,b NO₃-N Concentration and Contour Map

B11-3a,b TDS Concentration and Contour Map

B11-4a,b NO₂-N Concentration Change (2015-2012)

B11-5a,b TDS Concentration Change (2015-2012)

B11-6 Key Well Analysis Charts

	Basin Analytics	Irvine	Orange County		
a	GMZ Area (acres)	53,900	163,000		
Basin	Volume of storage (acre-ft)	1,800,000	23,600,000		
	Wells per GMZ	133	1639		
	Statistics per GMZ	63	824		
NO ₂ -N	Total Mass (tors)	96,300	15,700		
	1996-2015 AWQ	6.4	3		
	Wells per GMZ	131	1666		
TDS	Statistics per GMZ	90	1331		
105	Total Mass (tons)	19,400,000	15,700		
	1996-2015 AWQ	920	600		

Nitrate as Nitrogen (Nitrate or NO₃-N)

The nitrate objective for Irvine is 5.9 mg/L. The ambient nitrate concentration decreased from 6.7 mg/L in 2012 to 6.4 mg/L in 2015, and there is no assimilative capacity. Five out of the nine key wells in Irvine GMZ have an increasing trend in nitrate concentrations, two show a decreasing trend, and two show no trends in the nitrate concentrations. Fourteen of the total 133 wells with nitrate values in livine will not be eligible for the next AWQ recomputation if the well is not sampled prior to 2018. No new wells with statistics were added to the 1996 to 2015 AWQ recomputation, and sixteen wells that were sampled between 2014 and 2015 will be eligible to have statistics determined, if the wells are sampled again in the next AWQ recomputation period (1999-2018).

The nitrate objective for Orange County is 3.4 mg/L. The ambient nitrate concentration increased from 2.9 mg/L in 2012 to 3.0 mg/L in 2015, and there is no assimilative capacity. Two out of the twenty-three key wells in Orange County GMZ have an increasing trend in nitrate concentrations, twelve key wells show a decreasing trend, and the other nine show no trends in the nitrate concentrations, Sixty-seven of the total 1,639 wells with NITRATE values in Orange County will not be eligible for the next AWQ. recomputation if the well is not sampled prior to 2018. Thirty-three new wells with statistics were added to the 1996 to 2015 AWQ recomputation and forty-five wells that were sampled between 2014 and 2015 will be eligible to have statistics determined, if the wells are sampled again in the next AWQ recomputation period (1999-2018).

Total Dissolved Solids (TDS)

The TDS objective for Irvine is 910 mg/L. The ambient TDS concentration decreased from 940 mg/L in 2012 to 920 mg/L in 2015, and there is no assimilative capacity. One out of the nine key interpretive wells in invine GMZ show an increasing trend, five show a decreasing trend, and three show no trends in TDS concentrations. Thirteen of the total 131 wells with TDS values in Irvine will not be eligible for the next AWQ recomputation if the well is not sampled prior to 2018. No new wells with statistics were added to the 1996 to 2015 AWQ recomputation, and sixteen wells that were sampled between 2014 and 2015 will be eligible to have statistics determined, if the wells are sampled again in the next AWQ recomputation period (1999-2018).

The TDS objective for Orange County is 580 mg/L. The ambient TDS concentration decreased from 610 mg/L in 2012 to 600 mg/L. in 2015, and there is no assimilative capacity. Five out of the twenty-three key wells in Orange County GMZ have an increasing trend in TDS concentrations, seven key wells show a decreasing trend, and the other eleven show no trends in the TDS concentrations. Sixty-one of the total 1,666 wells with TDS values in Drange County will not be eligible for the next AWQ recomputation if not sampled prior to 2018. Forty-seven new wells with statistics were added to the 1996 to 2015 AWQ recomputation, and sixtysix wells that were sampled between 2014 and 2015 will be eligible to have statistics determined, if the wells are sampled again in the next AWQ recomputation period (1999-2018).

* significant trend **very significant trend Table 2 - Key Interpretive Wells

hin

ivine

Irvine

Indoor

Irvino

Irvine

Irvine

hvine

Orange County

1211902

1212995

1215112

1213146

1213164

1213186

1213206

1213225

1213296

1215407

1213515

1213533

1211579

1213609

1213673

1213707

1214069

1214212

1214529

1214637

1214955

1214963

1214993

1215593

IEWD-75/3

MICAS-1001

TIC-61/1

AM-13/1

AM-23/1 AM-37/1

AM-8/1

AMD-11/2

AMD-7/LWBL/MP

BFM-2/1/W81/MF1

DIAM-SAFE

EDCW-W/1

FM-1/1

FM-7ACL

GG-24/1

MCWD-5/1

0-3/1

OCWD-5A12/1

58-L0/1

505-7/1

SCWC-PU2/1

5CWC-SSHR/1

YLW0-5/1

1215500 WBS-2A/1/WB1/WF

1215504 WRS-3/1/WR1/MP2

GGM-2/1/WR1/MP

1213987 MCAS-1/L/W82/MP

1215/98 MCAS-1/1/W82/MP3

1214019 MCAS-3/1/W82/MI

1214020 MCAS-3/1/W92/MP

1214048 MCAS-7/L/WB3/MP

Mann-Kendall trend analyses on the annualized average concentrations for wells that have been identified as key interpretive wells was used to determine the significance of the trends in well concentrations. See Key Well Analysis Charts for more details. See Attachment B11-4 and B11-5 for NO₂-N and TOS well

(mg/t)

0.5

44.3

MAR

15.5

22.8

34.0

10.0

7.0

5.0

4.7

Q.A

2.3

3.3

Decreasing

Increasing*

Increasing

No Trend

Decreasing*

increasing!

No Trend

Increasing

Decreasing*

Decreasing*

Decreasing

Decreasing:

Decreasing*

Decreasing

No Trend

increasing*

Decreasing*

No Trend

No Trend

No Trend

No Torod

Increasing*

Decreasing*

No Years

Decreasing*

No Trend

Decreasing

Decreasing'

[mg/L]

5.75

2,420

2,265

333

1,261

1,371

2.261

564

511

972

344

BEC

552

663

231

554

269

297

604

766

231

532

654

539

601

No Trond

increasing*

Overvasing*

No Trend

Decreasing*

Decreasing

Decreasing

Increasing

No Trend

Increasing*

Increasing

No Yrond

No Trend

No Trend

Increase ng

No Treas

No Trend

No Trend

No Trend

Decreising*

Decreasing"

	Well Information			NO _s -N Well Attrition				TDS Well Attrition			
	GMZ	OI IIbW	Well Name	REsk:	Years'	Value	Method	Risk	Years	Value!	Metho
Т	ivine	1213833	IDM-1/1/WB1/MF1	Medium	3	45.4	Stat	Medium	3	1,033	Stat
	living	1213834	IDM-1/1/W91/MP10	High	2	0.2	ANT	High.	2	563	Aug
	irvine	1213835	IDM-1/1/W81/MF2	Medium	2	0.6	Stat	Median	2	878	Stat
	irvine	1213836	IDM-1/1/WB1/MF3	Medium	2	5.2	Stat	Median	- 1	567	Stat
	livine	1213837	IDM-1/1/WB1/MP4	High	2	0.1	Ave	High	2	650	Ast.
	irvine	1213838	IDM-1/1/WB1/MPS	High	2	0.1	Ave	High	2	458	Aug
	Irvine	1213839	IDM-1/1/W81/MP6	High	2	0.2	Ave	High	2	538	Aun
	livine	1213940	IDM-1/1/WB1/MF7	High	2	0.1	Ave	High.	2	526	Aur
	Irvine	1213941	IDM-1/1/WB1/MF8	High	2	0.2	Ave	High	2	535	Aur
	ivine	1213942	IDM-1/1/W81/MP9	14gh	2	0.1	Ave	High.	2	574	Aug
	ivine	1213872	IDP-2/1	Medium	3	26.9	Stat	Medium	2	1,720	Aso
	Irvine	1213875	10.6-401	Medium	3	22.9	Stat	Medium	2	1,079	Jones
	ining			Medium	2	33.2	Jun.	Median	2	1,290	des
	ivine	1213899	IRWO-72/1	High	2	14.2	Ave	High	2	1,030	Ave
	ivine.		-09UM-T/1	Medium	2	3.2	ANT	Median	2	665	dise
	Irvine	1215093	TIC-109/1	High	3	10.1	Stat	High	3	1,299	Stat
	lyine	1215094		Medium	3	22.4	Ave	-	-	-	**
	ivine		TIC-111/1	High	2	6.0	ANT	High.	2	1.111	Ase
	trying	1215096	TIC-112/1	High	3	9.0	Stat	High	3	868	Stat
	Inde			High	5	9.4	Ave	High	3	568	Auc
	living			High	2	3.0	AVE	High	1	858	Apr
	living	1215132	T-PANK/S	High	3	11.9	Stat	-	-	-	
	hvine	1215604	IDF-1/1	Median	2	24.6	Eve-	Modern	. 3	1.968	200

AMBIENT WATER QUALITY (1996 TO 2015)

Interpretative Tools Summary Orange County & Irvine GMZs

SAWPA Basin Monitoring Program Task Force

Recomputation of Ambient Water Quality __ for the Period 1996 to 2015

DBS&A

Attachment B11

BASIN MONITORING PROGRAM ANNUAL REPORT OF SANTA ANA RIVER WATER QUALITY SECTION 3 – ANALYSIS OF MONITORING DATA

Figure 3-1. Total Dissolved Solids (TDS) Below Prado Dam

Notes:
TDS Non-Weighted = TDS samples from RWQCB, USGS, HCMP, OCWD.
TDS Weighted = Monthly flow weighted TDS calculated from EC. Data prior to October 2003 from Watermaster,
October 2003 to December 2004 from Weinc, 2005 to 2014 from SAWPA.

Figure 2
Discharge and TDS Concentration of the Santa Ana River below Prado Dam
June-September

Figure 17
Influence of IEUA Discharge on the TDS Concentration of the Santa Ana River below Prado Dam

Implements the Water Quality Monitoring Program (R8-2005-0063)

- ✓ Annual Report of SAR Water Quality
- ✓ Ambient Groundwater Quality Update
- Waste Load Allocation Model (WLAM)

The Waste Load Allocation Model

Key Factors Considered in the WLAM:

- 1) Precipitation
- 2) Land Use
- 3) Runoff
- 4) Evaporation
- 5) Aeration

- 6) Percolation
- 7) Water Transfers
- 8) Discharges
- 9) Rising Groundwater
- 10) Nitrogen Loss

Can the discharge(s) be permitted and, if so, what effluent limits should apply?

Major Accomplishments:

- 1) Eleven Annual Reports of SAR Water Quality
- 2) Four Ambient Groundwater Updates
- 3) Two WLAM Updates
- 4) Dozens of NPDES Permit Renewals
- 5) Four Basin Plan Amendments
- 6) Prevented New 303(d) Listings
- 7) **ZERO** Litigation

Near Term Priorities

- 1) Complete WLAM Update (2018)
- 2) Develop a Draft Drought & Conservation Policy
- 3) Next AWQU = 2019
- 4) Index Task Force's On-Line Resource Library
- 5) Consider Expanding Task Force Membership

Long-Term Goals

- 1) Clarify Water Quality Assessment Procedures
- 2) Validate/Update TDS Objectives @ Prado Dam
- 3) Investigate Other Sources of TDS @ Prado Dam
- 4) Recycled Water Policy Updates

New Challenges

- 1) EPA's New Conductivity Guidance
- 2) State Board's New Biocriteria Policy
- 3) 303(d) Assessment in 2020-22
- 4) Minimum Flow Requirements?
- 5) Mass-based Effluent Limits?

Those who cannot remember the past...

...are condemned to repeat it.

"101 Workshop"

March 14, 2018

