Santa Ana River Wasteload Allocation Model Update

BASIN MONITORING PROGRAM TASK FORCE

April 16, 2018

- Review of Project Schedule
- Overview of Revised Draft TM No. 2

Status of Task 3 – Evaluate Waste Load Allocation
 Scenarios for Major Stream Segments

- Review of Project Schedule
- Overview of Revised Draft TM No. 2

Status of Task 3 – Evaluate Waste Load Allocation
 Scenarios for Major Stream Segments

Updated Project Schedule

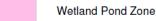
Table	Description.						20	17										2018				
Task	Description	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
1	Update the Data Used in the Waste Load Allocation Model (WLAM)																					
2	Update and Recalibrate the WLAM																					
3	Evaluate Waste Load Allocation Scenarios for Major Stream Segments																					
4	Develop WLAM for Managed Recharge in Percolation Basins																					
5	Estimate Off-Channel Recharge from Natural Precipitation																					
6	Run the WLAM in Retrospective Mode, Using Historical Discharge Data, to Estimate the Quantity and Quality of Recharge that Actually Occurred																					
7	Compile the WLAM into a Run-Time Software Simulation Package																					
9	Prepare Draft Task Report for Task 1									Δ						A						
	Prepare Draft Task Report for Task 2									A							A					
	Prepare Draft Task Report for Task 3																		A			
	Prepare Draft Task Report for Task 4																					
	Prepare Draft Task Report for Task 5																A					
	Prepare Draft Task Report for Task 6																			A	,,	
	Prepare a Draft Study Report and a Final Study Report																				A	A
10	Monthly Project Meetings				•	•	•		•	•	•	•		•		•	•	•	•	•	•	
11	Pilot evaluation of the Doppler Data Compared to Precipitation Gauge Data																					

- Review of Project Schedule
- Overview of Revised Draft TM No. 2

Status of Task 3 – Evaluate Waste Load Allocation
 Scenarios for Major Stream Segments

Summary of Comments for TM-2: WLAM Update and Recalibration

	Source	No Action Necessary	Minor Edit	Additional Explanation or Table/ Figure	Additional Work/ Model Calibration	Total No. of Comments
			Corresponding	Comment Number		
hop	IEUA/ CBWM	G-2, 11	5, 6, 7, 8, 9, 13, 17, 19, 20, 21	1,2, 4, 10, 12, 14, 15, 16, 18, 22	3, 23	24
Workshop	OCWD	13	2, 4, 8, 12, 15	1, 3, 5, 6, 10, 11, 14	7, 9	15
Prior to	RWQCB	-	1, 2, 3	5	4, 6, 7	7
Pri	SAWPA	-	2, 3	1, 5, 6	4, 7	7
Ris	sk Sciences	-	4, 14, 15, 16, 17, 18, 32, 34, 35, 36, 37, 38, 39, 40	1, 2, 8, 9, 10, 11, 13, 19, 20, 21, 22, 24, 25, 26, 27, 29, 30, 31, 33, 41	3, 5, 6, 7, 12, 23, 28	41
					Total	94


SAN BERNARDINO SAN GABRIEL MOUNTAINS Discharge from San Bernardino's Geothermal Plant Discharge from SB Geo-3 San Bernardino SB Geo-2 WRP SB Geo-Colton WWTP Rialto WWTP San Bernardino WRP RIX Facility IEUA RP-4 Carbon Canyon WRF Discharge from IEUA RP-1 IEUA RP-5 Riverside RWQCP Beaumont WWTP Western Riverside Co. RWAP Arlington Desalter Corona WWTP-1 Corona WWTP-3 LLWD WWTP EMWD's Region-Wide Water Recycling System

Additional Discharge

San Bernardino Co 50% (up to 100 cfs) Riverside Co Zone 1 40% **50%** Mill Greek 60% Zone 2 Zone 3 Zone 4 Zone 6 Zone 7 66% SAN BERNARDINO SAN GABRIEL MOUNTAINS **Outflow Weir Box Height Zone Capacity** Area Zone [acres] [ft] [acre-ft] 30 207 48 7 336 126 5 629 Figure Boundary 17 5 86 14 7 98 92 5 462 95 5 476 422 **TOTAL** 2,295

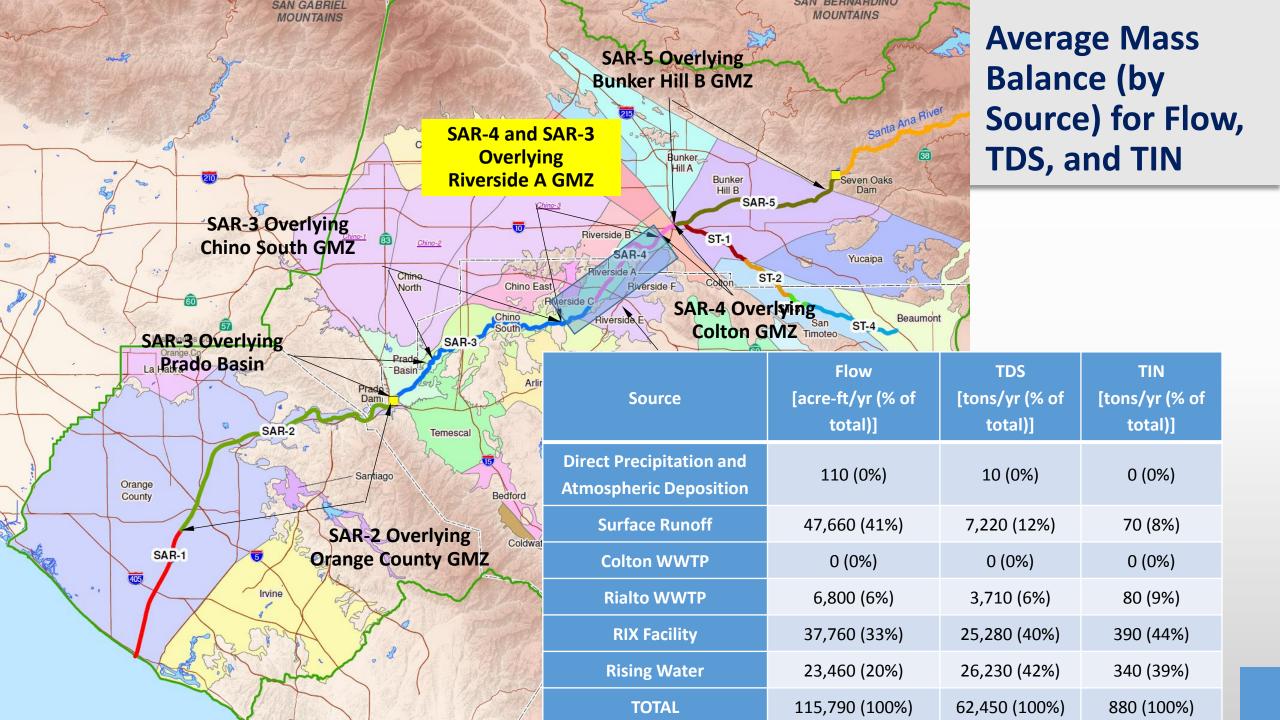
Impoundment Spreadsheet Model for the Prado Wetlands

Wetland Pond Conveyance Channel

Flow Direction
(Relative percentage of flow indicated at points of diversion)

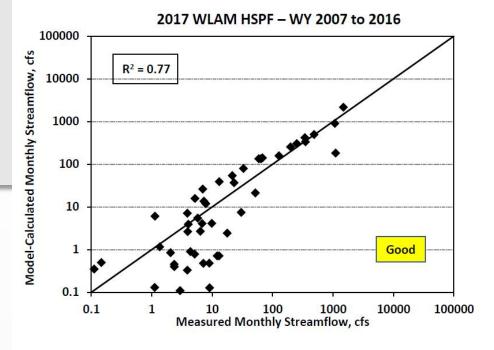
Differences between WLAM Versions (In Section 2.3 of the Revised Draft TM. No 2)

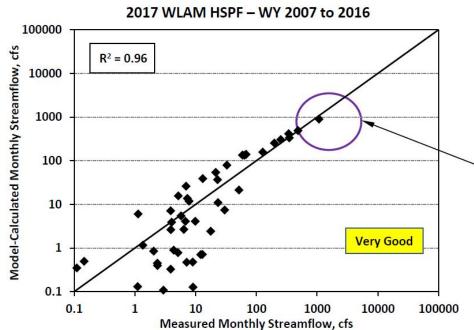
- Computer Code,
- Sub-Watershed,
- Soil Data,
- Land use Data,
- Precipitation Data,
- Evapotranspiration Stations,
- Streamflow Gaging Stations,
- TIN/TDS Streamflow Gaging Stations,
- Publicly owned treatment works (POTW) and Other Discharge data,

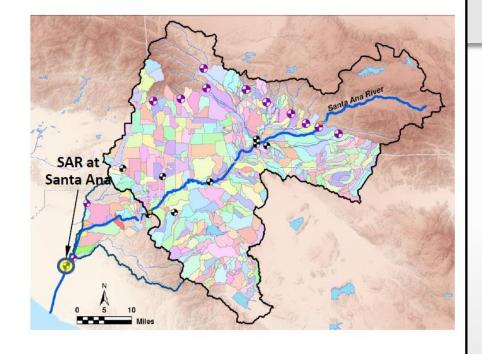

- Rising Water (Flow)
- Rising Water (TDS/TIN),
- Nitrogen Reaction Coefficients,
- Calibration Period,
- Calibration Methodology,
- Methods Used to Account for Flow at Select Locations, and
- Calibration Criteria

Differences between WLAM Versions (Cont.)

Item	2004 WLAM	2008 WLAM	2017 WLAM HSPF
Calibration	Monthly Flow:	Monthly Flow:	Daily Flow and Monthly Flow:
Criteria	• R ²	• R ²	• R ²
	Percent Error	 Root mean square error (RMSE)* 	Average Residual (NEW)
		RMSE Percent of Average Flow	Average Residual Percentage of Observed
	TDS/TIN:	 Nash-Sutcliffe Efficiency (NSE) 	(NEW)
	None (not enough		• RMSE
	data)	TDS/TIN:	RMSE as Percentage of Range of Observed
		None (not enough data)	
			TDS/TIN (NEW):
		*Note: RMSE formula was applied	Average Residual
		incorrectly (using measured data instead of	Average Residual Percentage of Observed
		squared residuals) – leading to an	Standard Deviation
		underestimation of the residuals.	• RMSE


Differences between WLAM Versions (Cont.)


Item	2004 WLAM	2008 WLAM	2017 WLAM HSPF
Methods used to Account for Flow at Select Locations	Not Applicable (model files unavailable)	 Added flow at San Timoteo Creek near Loma Linda and Chino Creek at Schaefer Avenue Applied discharge from Corona WWTP #1 above Temescal Creek at Main Street gage instead of below 	Model-Simulated
		Refer to Section 3.3 for details	



Outlier Analysis for Simulated Monthly Streamflow Performance

	R	²	Average Residual, cfs		
Gaging Station	2017 WLAM HSPF WY 2007-2016	Outliers Removed	2017 WLAM HSPF WY 2007-2016	Outliers Removed	
San Timoteo Ck near Loma Linda	0.68	0.68	-1.38	-1.38	
Warm Ck near San Bernardino	0.91	0.91	-1.31	-1.31	
Santa Ana River at E Street	0.97	0.97	-6.32	-6.22	
Santa Ana River at MWD Crossing	0.97	0.97	-12.09	-12.09	
Temescal Ck at Main Street	0.84	0.94	-0.69	-0.69	
Chino Ck at Schaefer Avenue	0.83	0.83	-2.27	-2.32	
Cucamonga Ck near Mira Loma	0.94	0.94	-0.22	-0.22	
Santa Ana River into Prado Dam	0.97	0.97	-1.26	-1.26	
Santa Ana River at Santa Ana	0.77	0.77	0.13	0.16	

Calibration improved after data between December 19, 2010 and January 12, 2011 were removed (very high flow)

SCATTERPLOTS OF MEASURED AND MODEL-SIMULATED MONTHLY STREAMFLOW AT THE SANTA ANA RIVER AT SANTA ANA WATER YEARS 2007 TO 2016 (2017 WLAM HSPF)

- Review of Project Schedule
- Overview of Revised Draft TM No. 2
- Status of Task 3 Evaluate Waste Load Allocation
 Scenarios for Major Stream Segments

DISCHARGE to SURFACE WATER	Current	2020	2040
Maximum Expected Discharge (MGD)			
Average Expected Discharge (MGD)			
Minimum Expected Discharge (MGD)			

Data Request Form Sent to POTWs

RECYLED WATER for IRRIGATION or REUSE	Current	2020	2040
Maximum Expected Reuse (MGD)			
Average Expected Reuse (MGD)			
Minimum Expected Reuse (MGD)			

RECYCLED WATER for AQUIFER RECHARGE	Current	2020	2040
Maximum Expected Recharge (MGD)			
Average Expected Recharge (MGD)			
Minimum Expected Recharge (MGD)			

WATER QUALITY	TIN	TDS
Effluent Limit in Current Discharge Permit (mg/L)		
Recent 12-mos. Volume Weighted Average (mg/L)		
Est. 12 mos. Volume Weighted Average in 2040 (mg/L)		

Status of POTW Data Request

POTW	Reply with Complete Form	Reply with Incomplete/Different Form	Need Additional Clarification from POTW	Need to be Reviewed by Board
Beaumont WWTP		\checkmark	✓	
YVWD H.N. Wochholz WRF	✓			
City of Redlands	✓		✓	
SBVMWD SNRC		\checkmark	✓	✓
Rialto WWTP	✓			
RIX facility		\checkmark	\checkmark	
Riverside RWQCP		✓		

Status of POTW Data Request

POTW	Reply with Complete Form	Reply with Incomplete/Different Form	Need Additional Clarification from POTW	Need to be Reviewed by Board
IEUA RPs and CCWRF		\checkmark	✓	
Western Riverside County RWAP	✓			
Corona WWTPs	✓		✓	✓
Temescal Valley WRF	✓			✓
EVMWD Regional WWRF		✓	✓	✓
EMWD Regional WRFs		\checkmark	\checkmark	
USACE SARMP Phase 4, 5A, and 5B		✓	✓	

Major Assumptions for Waste Load Allocation Scenarios

Scenario	Hydrology	Land Use	Maximum Expected Discharge	Average Expected Discharge	Minimum Expected Discharge
А		2020 Conditions (2012 Land Use)	X		
В				X	
С	WY 1950-2016				X
D	W 1330 2010	2040 Conditions	X		
Е		(General Plan, 2040)		X	
F					X

Is 2012 the best available land use data? Land use in 2012 was heavily influenced by the recent recession. Since then, the development boom was re-started.