Revision of the Lake Elsinore & Canyon Lake Nutrient TMDL

CDM Smith Team & Risk Sciences

Key Changes in the Final Draft

August 15, 2018

Lake Elsinore/Canyon Lake
Task Force Meeting

Presentation Outline

- Allocations updated to allow for increased volume
- Watershed runoff model extended for 2016, 2017
- Daily modeled internal flux
- Agricultural field nutrient washoff

Watershed Allocations

Update for Increased Allowable Volume

- Allowing for current runoff volume at reference nutrient concentration
- Increased volume to Canyon Lake and Lake Elsinore supports MUN, REC, and WARM uses

	WLA/LAs for Canyon Lake Main Lake		WLA/LAs for Canyon Lake East Bay		WLA/LAs for Local Lake Elsinore		LA for Canyon Lake Overflow to Lake Elsinore	
	TP (kg/yr)	TN (kg/yr)	TP (kg/yr)	TN (kg/yr)	TP (kg/yr)	TN (kg/yr)	TP (kg/yr)	TN (kg/yr)
Increased Runoff	1,149	3,304	562	1,617	794	2,283	3,050	8,753
No impervious area	971	2,791	437	1,255	738	2,121	2,620	7,532

Basis for Compliance Demonstration

Approach 3 – Average concentration (10 yrs) of watershed runoff samples

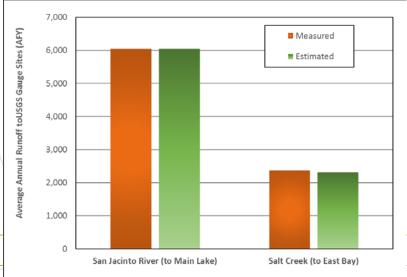
Year	Storm 1 TP (mg/L)	Storm 2 TP (mg/L)	Storm 3 TP (mg/L)	Storm 1 TN (mg/L)	Storm 2 TN (mg/L)	Storm 3 TN (mg/L)
	(mg/L)	(1118/11)	(IIIg/ L)	(IIIg/ L)	(iiig/ L)	(IIIg/ L)
Year 1	0.47	0.71	0.41	2.80	2.40	1.73
Year 2	0.40	0.63	0.53	3.20	3.10	2.45
Year3	0.38	0.52	1.10	5.00	2.90	2.14
Year 4	0.36	0.64	0.52	5.10	3.50	2.64
Year 5	0.30	0.34	0.34	2.90	4.57	4.08
Year 6	0.31	0.41	0.31	2.20	4.92	3.69
Year 7	0.53	0.44	2.88 *	2.00	2.91	6.02 *
Year 8	0.49	0.57	0.40	1.60	3.16	1.48
Year 9	0.62	0.73	0.41	1.76	1.58	1.63
Year 10	0.88	0.52	0.52	4.20	1.71	1.83
Step 2. Compute 10-yr Average Nutrient Concentration in Runoff		TP (mg/L)			TN (mg/L)	
		0.51	_		2.87	
* Sample removed from average ca	Iculation beca	use of influence	of burned hills	ide erosion (TSS	= 3163 mg/L)	
Step 3. Compute 10-yr Average Annual Runoff from Co-located Gauge (AF/yr):					1800	
Step 4. Compute Nutrient Loads in		TP (kg/yr)			TN (kg/yr)	
Runoff (Step 2 * Step 3)		1,132			6,369	
Step 5. Compute Allowable		TP (kg/yr)			TN (kg/yr)	
Nutrient Load (Step 3 * Ref Conc)		711	-		2,043	-
Step 6. Compute Nutrient Offset		TP (kg/yr)			TN (kg/yr)	_
Offset to be demonstrated with in- ake BMPs (Step 4 - Step 5)		422			4,326	

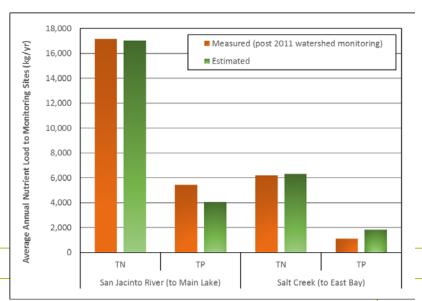
Effectiveness Demonstration:

Year	Storm 1 TP (mg/L)	Storm 2 TP (mg/L)	Storm 3 TP (mg/L)	Storm 1 TN (mg/L)	Storm 2 TN (mg/L)	Storm 3 TN (mg/L)
Year 1	0.27	0.51	0.21	2.00	1.60	0.93
Year 2	0.20	0.43	0.33	2.40	2.30	1.65
Year3	0.18	0.32	0.90	4.20	2.10	1.34
Year 4	0.16	0.44	0.32	4.30	2.70	1.84
Year 5	0.10	0.14	0.14	2.10	3.77	3.28
Year 6	0.11	0.21	0.11	1.40	4.12	2.89
Year 7	0.33	0.24	2.88*	1.20	2.11	6.02*
Year 8	0.29	0.37	0.20	0.80	2.36	0.68
Year 9	0.42	0.53	0.21	0.96	0.78	0.83
Year 10	0.68	0.32	0.32	3.40	0.91	1.03
ep 2. Compute 10-yr Average 0.31					2.	07
Sample removed from average calculation because of influence of burned hillside erosion (TSS = 3163 mg/L)						
Step 3. Determine whether one or both nutrients are reduced to eference concentration			Comp	oliance V - TI	Ponly	

Approach 4 – In-lake offsets

Watershed Model Extended to 2016, 2017

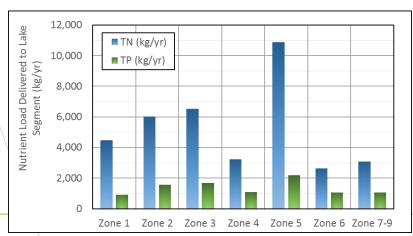


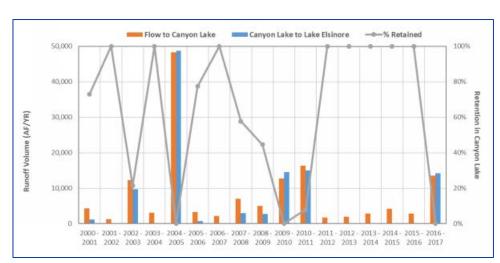

Watershed Model Extended

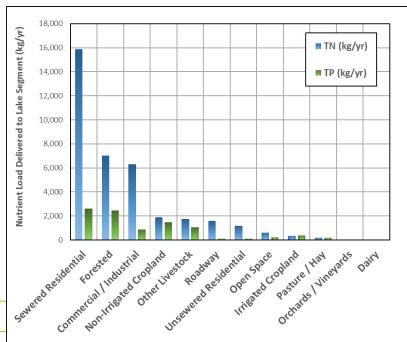
Includes 2016-17 wet season

Station	Period of Record	Period of Record Average Rainfall (in/yr)	1948-2017 Average ¹ Rainfall (in/yr)	2000-2017 Average ² Rainfall (in/yr)	Subwatershed Zone
San Jacinto Station 186	1903 – Present	12.7	12.0	10.2	6, 7, 8, 9 (below 3,000 ft)
Elsinore NWS Station 67	1896 - Present	12.1	11.4	9.2	1, 2, 3
Perris CDF Station 152	1910 – Present	10.5	10.3	11.4	5
Winchester Station 248	1940 - Present	10.9	10.8	9.1	4
Idyllwild NWS Station 90	1929 – Present	25.8	25.7	22.1	7, 8, 9 (above 3,000 ft)

Model fitting updated

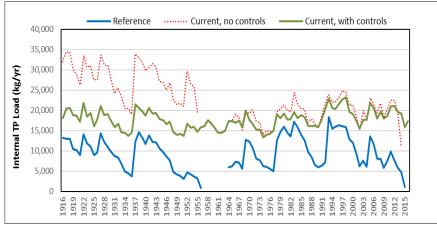


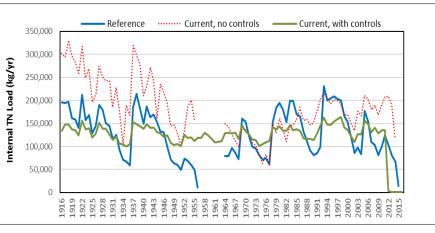




Watershed Model Extended

- Revised estimate of retention in Canyon Lake
- Mystic Lake overflow (add new years w/o spill)
- Long-term rainfall update for source assessment (1948-2017) runoff loads




Daily Sediment Nutrient Flux

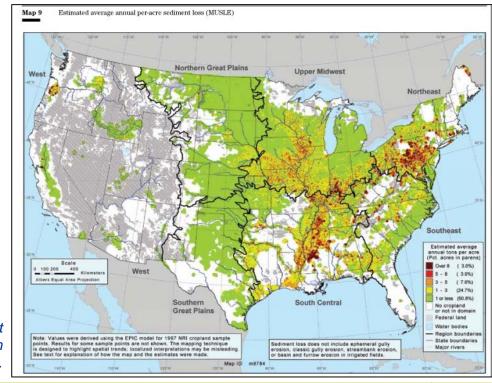
CAEDYM simulation of sediment nutrient flux

- Flux rate parameter modulated daily by temperature and DO in bottom water, wetted area
- Reference scenario flux rate parameter adjusted for predevelopment sediment enrichment
- With controls scenario flux rate parameter
 adjusted for <125 fish/acre,
 LEAMS impact on bottom
 water DO changes daily flux

CAEDYM simulation of sediment nutrient flux

- Prior estimates by extrapolation of core-flux measurements (2004 TMDL basis)
- TMDL revision exports daily modeled flux to estimate average annual sediment nutrient flux
- Modeled flux accounts for diffusive exchange and physical resuspension
- Offsetting excess external load will reduce internal flux to reference levels over time

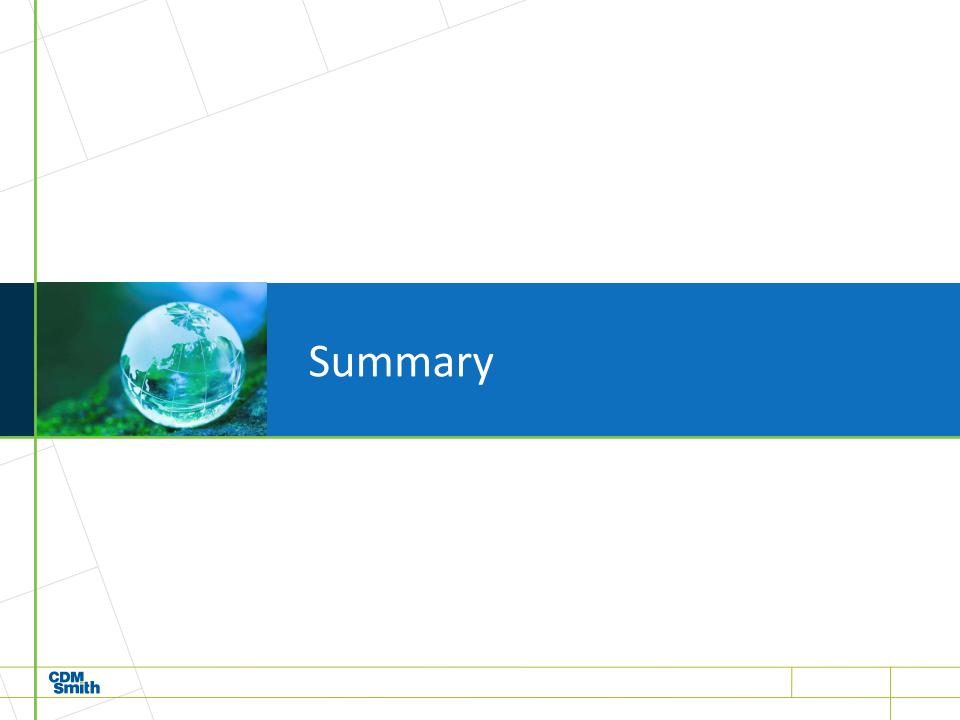
Lake	Reference		Current (No Controls)		Current (With Controls)	
Lake	TP (kg/yr)	TN (kg/yr)	TP (kg/yr)	TN (kg/yr)	TP (kg/yr)	TN (kg/yr)
Lake Elsinore (1916-2016)	9,503	128,315	23,034	184,772	17,731	123,040
Canyon Lake (2007-2011)	1,190	3,955	2,997	11,023	n/a1	n/a1


Agricultural Field Nutrient Washoff

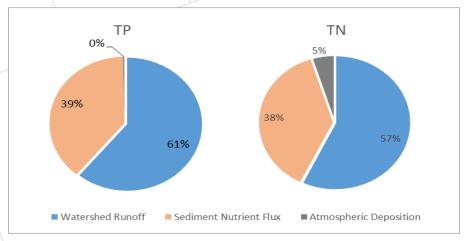
Agricultural land use nutrient washoff

- Multiple factors estimated in analysis
- Nutrient concentration in ag field soils (mg/kg) from preliminary sampling for CIG study (provided by WRCAC)
- Erosion of ag field soils by NRCS estimates for west
 - 0.5 tons/ac/yr for irrigated crops
 - 2.1 tons/ac/yr for nonirrigated crops

From NRCS, 2006. Model Simulation of Soil Loss, Nutrient Loss, and Change in Soil Organic Carbon Associated with Crop Production. U.S. Department of Agriculture. June 2006.

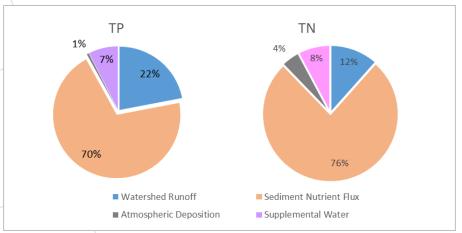


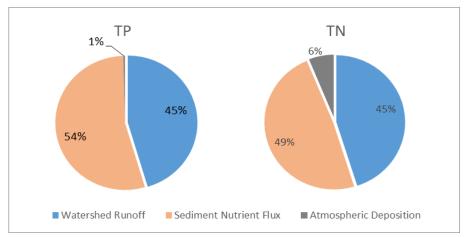
Agricultural land use nutrient washoff


- Sediment delivery ratio portion of eroded soil that is delivered to downstream waters (set to 5 percent)
 - Key calibration parameter in complex agricultural runoff models
 - Approximations from literature based on total watershed area
- Wet weather sampling data needed to validate estimated concentrations in source assessment

 Used in source assessment model

Pervious Soil TN Sediment TKN in land **Erosion** P in Soils **TP Export** TP **Export** TN Land use Delivery soils Runoff (tons/ac (kg/ac/yr) (kg/ac (mg/L)(ppm) (mg/L)Ratio (ppm) (in/yr) /yr) /yr) **Irrigated Cropland** 0.66 0.5 0.43 5% 1400 0.03 0.471300 0.03 (with BMPs) Non-Irrigated 0.66 2.1 5% 1100 0.10 1.54 1400 0.13 1.96 Cropland Orchards / Vineyards 0.66 0.5 5% 800 0.02 0.27 550 0.01 0.18 (with BMPs) Pasture/Hay 0.66 2.1 5% 1.82 1400 0.131.96 1300 0.12

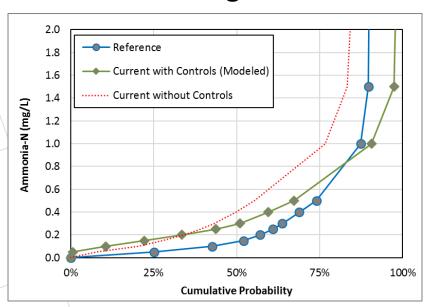

Source Assessment Summary

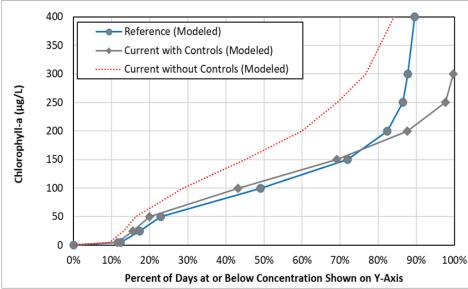


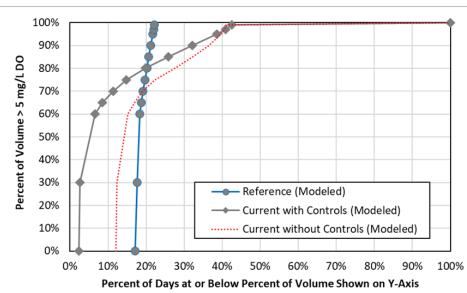
 Summary of nutrient sources for current conditions

Canyon Lake East Bay

Lake Elsinore




Canyon Lake Main Lake



Findings on Progress toward Compliance

 Comparison of current loading, with and without controls, to Lake Elsinore numeric target CDFs

Findings on Progress toward Compliance

 Canyon Lake – single nutrient control strategy with alum providing offsets

Site	TP (kg/yr)		
Site	Main Lake	East Bay	
1. Average External Load (1948-2017) (with existing watershed BMPs) ¹	1,916	1,110	
2. Allowable Load ²	1,149	562	
3. Load Reduction Required (1 minus 2)	767	548	
4. Average Annual Alum Additions (as dry alum)	215,000 ²	90,000	
5. Estimated Nutrient Reduction from Alum Additions ³	1,433	600	
6. Unmet Load Reductions (3 minus 5)	-667	-52	
1			

¹ Load expressed as portion retained within Canyon Lake

² Includes alum additions to the North Ski Area

³ Based on alum to sequestered P ratio of 150:1